Но если бы это произошло в любой из дней, кроме 1 января, то день, когда часы Болванщика и Мартовского Зайца в следующей раз покажут одно и то же время (а это событие, как мы установили, произойдет через 90 дней), пришелся бы не на март, а на апрель (или даже на май). Следовательно, Болванщик и Мартовский Заяц могли сверить свои часы только 1 января. Но даже в этом случае их часы покажут в следующий раз одно и то же время в марте только при условии, если год високосный! (В этом читатель без труда убедится с помощью календаря: через 90 дней после 1 января в обычный год наступает 1 апреля, а в високосный год - 31 марта!) Тем самым доказано, что 21 день рождения Мартовского Зайца приходится на високосный год. Следовательно, Мартовский Заяц мог родиться в 1843, а не в 1842 году или 1844 году.

(Через 21 год после 1843 года наступает високосный 1864 год.) По условиям задачи только один из двух (либо Мартовский Заяц, либо Болванщик) родился в 1842 году.

Следовательно, в 1842 году родился Болванщик. Значит, Болванщик старше Мартовского Зайца.

Глава 5

42. Появление первого шпиона. C заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, C либо лжец, либо шпион. Предположим, что C шпион. Тогда показание A ложно, значит, A шпион (A не может быть шпионом, так как шпион C) и рыцарем может быть только B. Но если B рыцарь, то как он мог дать ложные показания, утверждая, будто A рыцарь? Следовательно, предположение о том, что C шпион, приводит к противоречию. Значит, C лжец. Тогда показание B ложно, поэтому B либо лжец, либо шпион. Но так как лжец B, то шпионом должен быть A. Следовательно, A может быть только рыцарем. Итак, A рыцарь, B шпион и C лжец. 43.

Глупый шпион. Ложное заявление, изобличающее шпиона, могло быть, например, таким: "Я лжец".

Рыцарь никогда не лжет и поэтому не станет утверждать о себе, будто он лжец. С другой стороны, лжец никогда не говорит правды и не станет признаваться, что он лжец.

Только шпион может сделать ложное признание, будто он лжец.

44. Еще один глупый шпион. Истинное заявление, изобличающее шпиона, могло быть, например, таким: "Я не рыцарь".

Действительно, ни рыцарь, ни лжец не могли бы сказать о себе такое. Рыцарь никогда не лжет и не станет утверждать, будто он не рыцарь. Лжец всегда лжет и не станет признаваться, что он не рыцарь. Значит, такое заявление мог бы сделать только шпион.

45. Хитрый шпион. Если бы A ответил на вопрос судьи "да", то тем самым он изобличил себя как шпиона, так как судья (вместе с присяжными) мог бы рассуждать следующим образом:

"Предположим, что B шпион. Тогда все трое обвиняемых дали бы правдивые показания, что невозможно, так как один из них лжец. Следовательно, B не может быть шпионом. Значит, его показание ложно, поэтому B лжец. Показание C также ложно, а поскольку C не лжец (ибо лжец B), то он шпион".

Таким образом, если бы на вопрос судьи C ответил "да", то он был бы изобличен как шпион. Зная это, C благоразумно ответил "нет", лишив тем самым суд возможности установить, шпион он или коренной житель. (Суду удалось лишь установить, что либо C рыцарь, а B шпион, либо C лжец, а A шпион, либо C шпион.)

46. Кто Мердок? Так как A утверждает, что он шпион, то A либо лжец, либо шпион. Аналогичным образом, так как C утверждает, что он шпион, C либо лжец, либо шпион.

Следовательно, из двух подсудимых A и C один лжец, а другой шпион. Значит, B рыцарь и дал на суде правдивые показания:

A шпион.

47. Возвращение Мердока. Если A Мердок, то все три показания истинны, что невозможно, так как один из троих подсудимых лжец. Если C Мердок, то все три показания ложны, что также невозможно, так как один из троих подсудимых рыцарь. Следовательно, Мердоком должен быть B.

48. Более интересный случай. Задачу невозможно было бы решить, если бы в условиях не было ссылки на то, что суд изобличил шпиона, после того как на него указал C: ведь мы знаем, что суд смог установить, кто из троих шпион, и это весьма важная "зацепка"!

Предположим, что C обвинил A в том, что тот шпион.

Располагая этими данными, судья не мог бы решить, кто шпион, поскольку они позволяют лишь утверждать, что либо A шпион, B лжец и C рыцарь либо B шпион, A рыцарь и C лжец, либо C шпион, A лжец и B рыцарь.

Таким образом, если C указал на A как на шпиона, то судья не мог бы изобличить настоящего шпиона.

Посмотрим теперь, что произошло бы, если бы C указал на B.

Тогда B обвиняли бы в том, что он шпион, двое: A и C.

Выдвинутые A и C обвинения либо оба истинны, либо оба ложны. Если бы они были оба истинны, то B действительно был бы шпионом, а так как A и C оба сказали правду, они оба должны были бы быть рыцарями ("вакансия" шпиона занята B). Но по условиям задачи среди подсудимых A, B и C не может быть двух рыцарей. Следовательно, предъявленные B обвинения в шпионаже ложны. Значит, B не шпион. Мог бы A быть шпионом? Нет, так как если бы A был шпионом, то взаимные обвинения B и C в шпионаже были бы ложны.

Перейти на страницу:

Похожие книги