Итак, это один из кортежей нашего отношения, у которого переименовали атрибуты.

В табличных терминах отношение

ρ < № зачетной книжки, Оценка «№ ЗК, Балл > Сессия —

это новая таблица, полученная из таблицы отношения «Сессия», переименованием указанных атрибутов.

<p>4. Свойства унарных операций</p>

У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.

Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции.

Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно.

Итак:

1) соотношение мощностей:

а) для операции выборки: | σ<P>r |≤ |r|;

б) для операции проекции: | r[S'] | ≤ |r|;

в) для операции переименования: | ρ<φ>r | = |r|;

Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.

В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;

2) свойство идемпотентности:

а) для операции выборки: σ<P> σ<P>r = σ<P>;

б) для операции проекции: r [S’] [S’] = r [S'];

в) для операции переименования в общем случае свойство идемпотентности неприменимо.

Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.

Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.

Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.

И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;

3) свойство монотонности:

а) для операции выборки: r1 r2σ<P> r1 σ <P>r2;

б) для операции проекции: r1 r2 r1[S'] r2 [S'];

в) для операции переименования: r1 r2 ρ<φ>r1ρ <φ>r2;

Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r1 и r2 были связаны между собой таким образом, что rr2, то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.

<p>Лекция № 5. Реляционная алгебра. Бинарные операции</p><p>1. Операции объединения, пересечения, разности</p>

У любых операций есть свои правила применимости, которые необходимо соблюдать, чтобы выражения и действия не теряли смысла. Бинарные теоретико-множественные операции объединения, пересечений и разности могут быть применены только к двум отношениям обязательно с одной и той же схемой отношения. Результатом таких бинарных операций будут являться отношения, состоящие из кортежей, удовлетворяющих условиям операций, но с такой же схемой отношения, как и у операндов.

1. Результатом операции объединения двух отношений r1(S) и r2(S) будет новое отношение r3(S), состоящее из тех кортежей отношений r1(S) и r2(S), которые принадлежат хотя бы одному из исходных отношений и с такой же схемой отношения.

Таким образом, пересечение двух отношений – это:

r3(S) = r1(S) ∪ r2(S) = {t(S) | tr1tr2};

Для наглядности, приведем пример в терминах таблиц:

Пусть даны два отношения:

r1(S):

r2(S):

Мы видим, что схемы первого и второго отношений одинаковы, только имеют различной количество кортежей. Объединением этих двух отношений будет отношение r3(S), которому будет соответствовать следующая таблица:

r3(S) = r1(S) ∪ r2(S):

Итак, схема отношения S не изменилась, только выросло количество кортежей.

Перейти на страницу:

Все книги серии Экзамен в кармане

Похожие книги