С одной стороны, это серьезная трансформация процесса процесс подбора и резкое снижение его стоимости, с другой – чтобы пользоваться таким процессом, организации необходимо быть готовой внедрять такие сервисы в режиме Plug and Play, постоянно подключая эффективные цифровые сервисы и заменяя привычные процессы, требующие участия человека.

Датчики, телеметрия, бесконечные потоки данных, формирующие океан информации, создали новую цифровую экосистему. В ней с повышением интеграции данных в текущие процессы меняется и роль человека. На смену традиционным профессиям индустриальной экономики приходит запрос на новые навыки в отношении управления и интеграции данных. Рынок и трансформация модели конкуренции открывают новые ниши для небольших игроков, которые формируют основное давление на современные большие компании. Чтобы быть эффективным, бизнесу придется акцентировать больше внимания в своем развитии на создание адекватной инфраструктуры сбора и обработки данных, а также решить ряд важных задач. Среди них ключевую роль играют методология и стандартизация протоколов передачи данных, информационная безопасность, аудит и управление качеством данных.

Потому что какими бы продвинутыми ни были алгоритмы, все они отступают при встрече с аномалиями в данных, причина которых может быть в некачественной информации. Поэтому проектирование, зачистка, контроль и арбитраж целостности – это одни из самых важнейших задач, которые придется решать в новой цифровой экономике.

Переход к новой парадигме работы с аналитикой, данными и информацией потребует от организации более высокого уровня зрелости, а это означает, что бизнес будет вынужден решить невыполнимую задачу по обучению специалистов и интеграции новейших технологий работы с данными в кратчайшие сроки, изменив при этом роль и ответственность участников цепочки создания информационного контента.

В этой книге я разберу основные приемы и модели, которые можно применять при выполнении этих задач, и которые помогут ответить на этот вызов. Мы с вами проанализируем: как строить команду, как выглядят новые профессии и какие методы управления могут применяться. Я расскажу, как можно разобрать кейсы, и покажу, как спроектировал новые сервисы, которые смогут заменить традиционные аналитические записки или отчетность.

<p>Глава 2</p><p>Стратегия данных</p><p>С чего начинается стратегия данных?</p>

Стратегию данных каждый из ключевых менеджеров компании сегодня понимает по-разному. А некоторые ее вообще до сих не понимают. Оно и понятно, много букв. Это как вишенка на торте инноваций и технологий, в котором еще надо уметь разбираться, чтобы просто банально насладиться тем вкусом, который есть. В том числе по-разному ее понимают и ключевые игроки рынка, производители программного обеспечения, разработчики и архитекторы данных. Нельзя просто взять, собрать всех вместе и наивно полагать, что получится договориться о чем-то одном.

Жизненный цикл данных

Данные – это что-то непонятное, неопределенное, как бесформенный прозрачный кислород. Вроде есть, вроде важен, но с чего начать?

Но во всех взглядах есть общее ядро, которое разделяется каждым из участников и является одним из ключевых факторов выбора и реализации стратегии – это понимание цикла работы с данными. Я выделил несколько моделей, иллюстрирующих наиболее полный жизненный путь данных внутри организации.

Например, модель Малькольма Чисхолма[22] выделяет семь активных фаз взаимодействия с данными:

1. Data Capture – создание или сбор значений данных, которые еще не существуют и никогда не существовали в компании.

а. Data Acquisition – покупка данных, предложенных внешними компаниями;

b. Data Entry – генерация данных ручным вводом, при помощи мобильных устройств или программного обеспечения;

c. Signal Reception – получение данных с помощью телеметрии (интернет-вещей).

2. Data Maintenance – передача данных в точки, где происходит синтез данных и их использование в форме, наиболее подходящей для этих целей. Она часто включает в себя такие задачи, как перемещение, интеграция, очистка, обогащение, изменение данных, а также процессы экстракции-преобразования-нагрузки;

3. Data Synthesis – создание ценности из данных через индуктивную логику, использование других данных в качестве входных данных.

4. Data Usage – применение данных как информации для задач, которые должно запускать и выполнять предприятие. Использование данных имеет специальные задачи управления ими. Одна из них заключается в выяснении того, является ли законным использование данных в том виде, в котором хочет бизнес. Это называется «разрешенным использованием данных». Могут существовать регулирующие или контрактные ограничения на то, как фактически можно использовать данные, а часть роли управления данными заключается в обеспечении соблюдения этих ограничений.

Перейти на страницу:

Все книги серии Бизнес-бук

Похожие книги