По мере того, как развивалась Big Data-аналитика, некоторые компании стали инвестировать в машинное обучение (ML). Машинное обучение остается одной из самых востребованных и внедряемых технологий. И она еще не исчерпала свой потенциал. По прогнозу аналитической фирмы Ovum[150], машинное обучение – один из главных трендов в Big Data-технологиях. Его применение будет все расширяться. От задач по бизнес аналитике оно перейдет на большинство задач по подготовке и преданализу данных. Не исключено, что ряд задач по интеграции источников данных также будет решаться с привлечением машинного обучения через анализ и интеграцию словарей (описание объектов данных в тех или иных источниках).

Аналитика всего

Предсказательная аналитика тесно связана с машинным обучением. На самом деле, системы ML часто предоставляют инструменты для аналитики интеллектуального программного обеспечения.

На заре появления Big Data компании исследовали свои данные, чтобы понять, что было в прошлом. После этого они начали использовать свои инструменты для анализа, чтобы определять причины тех или иных событий.

Прогностическая аналитика идет еще дальше. Она предсказывает, что произойдет в будущем, используя анализ Big Data. Число организаций, использующих предсказательную аналитику в 2017 году, – не очень большое, всего 29 процентов, согласно опросу 2016 года от PwC.

Тем не менее многие поставщики готовых решений представляют интеллектуальные инструменты для аналитики. И за счет их клиентов количество компаний, использующих предсказательную аналитику, может резко увеличиться.

Большая часть финансовых функций и подразделений также будет заменена алгоритмами и сервисами, позволяющими получать инсайты и ответы на регулярные вопросы со стороны владельцев бизнес-процессов о состоянии дел.

Поменяются и форматы представления данных – в сторону стандартных нотаций (например, XBRL).

Сайты компаний будут иметь интерфейсы для аналитических сервисов, которые будут позволять автоматизировать, например, отчетность для инвесторов.

Big Data приложения – появляется простота и стабильность

Машинное обучение и технологии ИИ используются для создания приложений. Они, например, анализируют предыдущие действия пользователя, и за счет этого делают персонализированные предложения. Одним из известных примеров являются рекомендательные сервисы, которые сейчас используются множеством приложений для электронной коммерции и развлечений.

Развивается направление Intelligent Security

Многие компании также включают Big Data-аналитику в свою стратегию безопасности. Данные из логов организаций предоставляют информацию о прошлых попытках атак. Их можно использовать для прогнозирования и предотвращения будущих атак.

В результате, некоторые компании интегрируют свое ПО для обеспечения безопасности и управления событиями с платформами Big Data, такими как Hadoop. Другие – обращаются к поставщикам решений по безопасности, чьи продукты включают в себя большие возможности для анализа данных.

Все больше решений IoT

Интернет Вещей тоже вносит вклад в Большие данные. Согласно отчету IDC[151],«31,4 процента опрошенных организаций запустили решения IoT, а 43 процента планируют развернуть их в ближайшие 12 месяцев». Со всеми этими новыми устройствами и приложениями, которые появляются в сети, данных будет еще больше, чем раньше. Многим компаниям потребуются новые технологии и системы для обработки возрастающего потока данных, поступающих из их решений IoT. Большую интеграцию и развитие также получат смежные сервисы, где данные с устройств будут использоваться для предоставления сторонних сервисов, например финансовых, таких как страхование имущества или кредитование под поставку объектов имущества.

Развиваются решения Edge Computing

Одной из новых технологий, которые могут помочь компаниям справиться с Большими данными IoT, являются вычисления на узлах (машинах), близких к источникам данных.

Это называется Edge Computing (англ. edge – «край»). В Edge Computing Big Data-анализ происходит очень близко к устройствам и датчикам IoT, а не в центре обработки данных или облаке. Компаниям это дает существенные преимущества. У них становится меньше данных, передающихся по их сетям. В результате, можно повысить производительность и сэкономить на стоимости облачных вычислений в сети. Это позволяет организациям удалять данные IoT, которые являются ценными в течение ограниченного периода времени, что снижает затраты на хранение и инфраструктуру. Edge Computing также может ускорить процесс анализа, снижая time-to-market для аналитики.

Возрастает ценность людей

Для IT-специалистов рост Big Data-аналитики, вероятно, будет означать высокий спрос и высокие зарплаты для тех, кто смог быстро набрать опыт по работе с Big Data-технологиями. По данным IDC: «Только в США в 2018 году будет 181000 вакансий, связанных с аналитикой, и в пять раз больше позиций, требующих соответствующих навыков управления и интерпретации данных».

Перейти на страницу:

Все книги серии Бизнес-бук

Похожие книги