Различают 2 механизма активации ферментов с помощью белок-белковых взаимодействий:

1. активация ферментов в результате присоединения регуляторных белков;

2. изменение каталитической активности ферментов вследствие ассоциации или диссоциации протомеров фермента.

Регуляция каталитической активности ферментов путём фосфорилирования/дефосфорилирования.

В биологических системах часто встречается механизм регуляции активности ферментов с помощью ковалентной модификации аминокислотных остатков. Быстрый и широко распространённый способ химической модификации ферментов – фосфорилирование/дефосфорилирование. Модификации подвергаются ОН-группы фермента. Фосфорилирование осуществляется ферментами протеинкиназами, а дефосфорилирование – фосфопротеинфосфатазами. Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными.

Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.

Некоторые ферменты, функционирующие вне клеток (в ЖКТ или в плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определённых пептидных связей, что приводит к отщеплению части белковой молекулы предшественника. В результате в оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (трипсиноген – трипсин).

Ферменты плазмы крови

По происхождению ферменты плазмы крови можно подразделить на 3 группы.

1. Собственные ферменты плазмы крови (секреторные). Они образуются в печени, но проявляют своё действие в крови. К ним относятся ферменты свертывающей системы крови – протромбин, проакцелерин, проконвертин, а также церулоплазмин, холинэстераза.

2. Экскреторные ферменты – попадают в кровь из различных секретов – дуоденального сока, слюны и т.д. К ним относятся амилаза, липаза.

3. Клеточные ферменты – попадают в кровь при повреждениях или разрушениях клеток или тканей.

Таблица 4.1. Органоспецифические ферменты (изоферменты)

Фермент (изофермент)

Орган, при повреждении которого, активность фермента в крови увеличивается

ЛДГ

1

миокард

ЛДГ

2

ЛДГ

3

легкие

ЛДГ

4

печень, мышцы

ЛДГ

5

Амилаза

поджелудочная железа

АЛТ

печень

АСТ

миокард

кислая фосфатаза

простата

щелочная фосфатаза

кости

Энзимопатии

В основе многих заболеваний лежат нарушения функционирования ферментов в клетке – энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.

При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомно-рецессивному типу. Гетерозиготы, чаще всего, не имеют фенотипических отклонений. Первичные энзимопатии обычно относят к метаболическим болезням, так как происходит нарушение определённых метаболических путей. При этом развитие заболевания может протекать по одному из ниже  перечисленных «сценариев». Рассмотрим условную схему метаболического пути:

 Е1      Е2      Е3     Е4

А  ->  В  ->  С  ->  D  ->  Р

Вещество А в результате последовательных ферментативных реакций превращается в продукт Р. При наследственной недостаточности какого-либо фермента, например фермента Е3, возможны разные нарушения метаболических путей:

Нарушение образования конечных продуктов.

Недостаток конечного продукта этого метаболического пути  (при отсутствии альтернативных путей синтеза) может приводить к развитию клинических симптомов, характерных для данного заболевания.

Клинические проявления. В качестве примера можно рассмотреть альбинизм. При альбинизме нарушен синтез в меланоцитах пигментов – меланинов. Меланин находится в коже, волосах, радужке, пигментном эпителии сетчатки глаза и влияет на их окраску. При альбинизме наблюдают слабую пигментацию кожи, светлые волосы, красноватый цвет радужки глаза из-за просвечивающих капилляров. Проявление альбинизма связано с недостаточностью фермента тирозингидроксилазы (тирозиназы) – одного из ферментов, катализирующего метаболический путь образования меланинов.

Накопление субстратов-предшественников.

При недостаточности фермента будут накапливаться определенные вещества, а также во многих случаях и предшествующие им соединения. Увеличение субстратов-предшественников дефектного фермента – ведущее звено развития многих заболеваний.

Перейти на страницу:

Похожие книги