Если же раствор, содержащий денатурированную ДНК, медленно охладить, могут вновь сформироваться двухспиральные структуры, идентичные исходным. Такой процесс получил название ренатурации. На явлении денатурации и ренатурации основан метод, называемый молекулярной гибридизацией. Процесс гибридизации может осуществляться между двумя любыми цепями нуклеиновых кислот (ДНК – ДНК, ДНК – РНК) при условии, что они содержат комплементарные последовательности нуклеотидов. Гибриды могут быть совершенными (полная комплементарность цепей) и несовершенными (частичная комплементарность цепей). Методом молекулярной гибридизации можно установить сходство и различие первичной структуры разных образцов нуклеиновых кислот. Это используется для выделения генов и РНК, изучения первичной структуры нуклеиновых кислот, определения степени родства, а также для получения рекомбинантных ДНК.

Методы изучения структуры нуклеиновых кислот

В течение ряда лет о первичной структуре нуклеиновых кислот судили по косвенным данным (оценивали количество пуриновых и пиримидиновых оснований, распределение минорных оснований, особенности физических свойств). Усовершенствование метода электрофореза в полиакриламидном геле и открытие рестриктаз позволило перейти на качественно другой уровень исследований в данной области. Рестриктазы применяются для разрезания нуклеиновых кислот на фрагменты, причем разделение происходит в строго определенных точках. Полученные фрагменты разделяют методом электрофореза, затем исследуют их нуклеотидную последовательность. Для секвенирования (определения последовательности мономеров) применяют методы Максама-Гилберта или Сэнгера.

Глава 6. Биосинтез нуклеиновых кислот

Способность к передаче наследственных свойств путем переноса генетической информации является уникальным свойством живых систем.

В организмах существуют три варианта передачи генетической информации.

1. Репликация - перенос генетической информации в пределах одного класса нуклеиновых кислот (от ДНК к ДНК или у некоторых вирусов от РНК к РНК).

2. Транскрипция – перенос информации между разными классами нуклеиновых кислот, бывает прямая (от ДНК к РНК) и обратная (от РНК к ДНК).

3. Трансляция – перенос генетической информации от мРНК к белку.

Центральная догма молекулярной биологии отражает направление переноса генетической информации в клетке: от ДНК через РНК к белку. Согласно ей, не может быть переноса информации от белка к РНК, но допускается перенос от РНК к ДНК. То есть, генетическая информация существует только в форме  нуклеиновой кислоты и не может передаваться от аминокислотных последовательностей белка.

Биосинтез ДНК

Удвоение ДНК у эукариот проходит в S-фазу клеточного цикла. Инициацию репликации регулируют специфические сигнальные белковые молекулы – факторы роста. Они связываются с рецепторами клеточных мембран, генерируя сигнал, который и побуждает клетку к началу репликации. Одними из первых активируются гены, кодирующие белки циклины. Циклинзависимые киназы, связывая циклин, переходят в активную форму и фосфорилируют специфические белки, которые регулируют синтез ферментов, обеспечивающих репликацию.

Синтез новых цепей ДНК может произойти только при расхождении родительских цепей. В точке начала репликаци (сайты инициации или ориджины) происходит локальное расхождение цепей ДНК и образуются две репликативные вилки, движущиеся в противоположных направлениях.

В образовании репликативной вилки принимает участие ряд белков и ферментов (Рис. 6.1.):

1. семейство ДНК-топоизомераз обеспечивает устранение суперспирализации.

2. ДНК-хеликазы, используя энергию АТФ, осуществляют разрыв водородных связей между полинуклеотидными цепями и расплетают двойную спираль ДНК.

В поддержании этого участка ДНК в раскрученном состоянии участвуют ДНК-связывающие белки (ДСБ). Они связываются с одноцепочечной ДНК по всей длине разделившихся цепей, предотвращая их комплементарное взаимодействие.

Репликация ДНК осуществляется ДНК-зависимыми ДНК-полимеразами. Субстратами и одновременно источниками энергии для синтеза служат дАТФ, дГТФ, дЦТФ и дТТФ. Ферменты проявляют каталитическую активность только в присутствии предварительно раскрученной матричной двухцепочечной ДНК. Синтез цепей происходит в направлении 5`->3` растущей цепи. Матричная цепь всегда считывается в направлении 3`->5`, т. е. синтезируемая цепь всегда антипараллельна матричной цепи. В ходе репликации образуются 2 дочерние цепи, представляющие собой копии матричных цепей.

В синтезе эукариотических ДНК принимают участие 5 ДНК-полимераз. ДНК-полимераза обеспечивает репликацию только митохондриальной ДНК. ДНК-полимеразы , , , участвуют в синтезе ДНК в ядре клеток.

Перейти на страницу:

Похожие книги