| Антибиотики | Механизм действия |
|---|---|
| Ингибиторы репликации | |
| Мелфалан | Алкилирует ДНК |
| Ингибиторы репликации и транскрипции | |
| Актиномицин D | Встраиваются между парами оснований ДНК, блокируют синтез ДНК и РНК у про- и эукариот |
| Дауномицин | |
| Доксорубицин | |
| Новобиоцин | Ингибируют ДНК-топоизомеразу, ответственную за суперспирализацию ДНК |
| Номермицин | |
| Ингибиторы транскрипции | |
| Рифампицин | Связываются с бактериальной РНК-полимеразой |
| Ингибиторы трансляции | |
| Тетрациклины | Ингибируют элонгацию: связываются с 30S субъединицей рибосомы и блокируют присоединение аа-тРНК в А-центр |
| Левомицетин | Присоединяется к 50S субъединице рибосомы и ингибирует пептидилтрансферазную активность |
| Эритромицин | Присоединяется к 50S субъединице рибосомы и ингибирует транслокацию |
| Стрептомицин | Ингибирует инициацию трансляции.Связывается с 50S субъединицей рибосомы, вызывает ошибки в прочтении информации, закодированной в мРНК |
Использование ДНК-технологий в медицине
Достижения в области молекулярной биологии существенно повлияли на современную медицину: они не только углубили знания о причинах многих болезней, но и способствовали разработке новых подходов в их диагностике и лечению.
Для выявления дефектов в структуре ДНК она должна быть выделена из биологического материала и “скопирована” (наработана) в количествах, достаточных для исследования. Для генно-терапевтических работ необходимо выделение нормальных генов и введение их в дефектные клетки таким образом, чтобы они экспрессировались, позволяя восстановить здоровье пациента.
Выделение ДНК включает быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран с помощью центрифугирования, разрушение белков протеазами, экстрагирование ДНК с последующим её осаждением. В ходе выделения получают очень большие молекулы, их дополнительно фрагментируют с помощью рестриктаз. Образующиеся фрагменты разделяют методом электрофореза. Количество и длина получающихся фрагментов, и соответственно, расположение полос на электрофореграмме уникально и специфично для каждого человека.
Идентификация характерных последовательностей проводится методом блот-гибридизации по Саузерну. Фрагменты ДНК подвергают денатурации и осуществляют перенос (блоттинг) на плотный носитель (фильтр или мембрану). Фиксированную на фильтре ДНК гибридизуют с небольшими фрагментами ДНК или РНК, содержащими радиоактивную (флюоресцентную или др.) метку. Такие фрагменты называют ДНК- или РНК-зондами. Если в исследуемом образце есть последовательности, комплементарные последовательностям зонда, то гибридизацию можно определить визуально или с помощью специальных приборов. Метод применяется для диагностики инфекционных заболеваний, наследственных дефектов, установления экспрессии тех или иных генов.
Секвенирование (определение первичной структуры) ДНК проводится химическим или энзиматическим методом. Метод Маскама и Гилберта (химический) основан на химической деградации ДНК. Суть метода сводится к следующему: один из концов фрагмента ДНК метят с помощью радиоактивной или флюоресцентной метки. Препарат меченой ДНК делят на четыре порции и каждую из них обрабатывают реагентом, разрушающим одно или два из четырех оснований, причем условия реакции подбирают таким образом, чтобы на каждую молекулу ДНК приходилось лишь несколько повреждений. В результате получается набор меченых фрагментов, длины которых определяются расстоянием от разрушенного основания до конца молекулы. Фрагменты, образовавшиеся во всех четырех реакциях, подвергают электрофорезу в четырех соседних дорожках; затем проводят их идентификацию. По положению отпечатков можно определить, на каком расстоянии от меченого конца находилось разрушенное основание, а зная это основание – его положение. Так набор полос определяет нуклеотидную последовательность ДНК.