Из-за огромного объема связанных с этим работ часто ограничиваются созданием узкоспециализированного банка данных, ориентированного на решение определенного класса частных задач; в последнее время, однако, предприняты успешные попытки создания более универсальных банков данных. Это очень сложно организованные службы (обычно международные), занятые обработкой существующей и сбором постоянно поступающей новой информации о биологической активности химических соединений.

Но, допустим, все эти, в сущности, технические трудности позади. Решены все языковые проблемы, создан банк данных, можно приступать наконец к анализу связи «структура — активность».

Наиболее универсальные подходы к решению задач подобного рода базируются на теории распознавания образов.

Предположим, идете вы по осеннему лесу, помахивая корзиной, в которой лежат две-три сыроежки, и жадно шарите взором по траве. Стоп — шляпка! Наклонившись, срезали. Осмотрели — типичная свинушка. Как вам удалось это установить? Все очень просто, ответит специалист по теории распознавания образов. Каждый гриб можно описать с помощью некоторого набора признаков: пластинчатый или губчатый, цвет шляпки, форма шляпки и ножки, глянцевитая или матовая поверхность, цвет «мяса» и т. п. Обучаясь различению грибов, вы рассматривали представителей различных их видов, причем знающий человек («учитель») вам говорил: вот это, мол, подберезовик, то — волнушка, а вон то — опенок. Иногда он специально указывал на какой-то отличительный признак скажем, характерным образом подогнутые края шляпки, иногда вы просто полагались на зрительную память. Таким образом, вы вырабатывали для себя решающее правило, с помощью которого теперь уже без помощи учителя сумеете определить вид вновь найденного гриба, то есть отнести его к соответствующему классу подлежащих распознаванию объектов.

Не всегда вы сможете это правило сформулировать вполне четко. Есть признаки, совершенно однозначно определяющие вид (скажем, белые бородавки на ярко-красной шляпке), присущие многим видам (выпуклая форма шляпки) или практически бесполезные при определении вида (размер). Некоторые комбинации признаков, характерных для данного вида, мы часто воспринимаем «на глаз», и если нас спросят, почему мы решили, что это именно опенок, а не шампионьон или (чур, чур!) бледная поганка, объяснить будет трудно, хотя, положив рядом опенок и шампиньон, мы в конце концов сможем указать вполне конкретные различия в отдельных признаках или их комбинациях. Это — так называемая задача обучения распознаванию образов. Если же вы, к примеру, попали на обитаемый остров, где произрастают разные виды грибов, то, будучи человеком наблюдательным, рано или поздно сами создали бы для себя определенную их классификацию (таксономию), необязательно, конечно, совпадающую с общепринятой научной. Это случай так называемого самообучения.

Если описание объекта можно легко формализовать — например, в качестве признаков используются числа, наличие или отсутствие какого-либо элемента и т. п. — почему бы не поручить задачу распознавания вычислительной машине?

Пусть, для простоты, признаков только два, и оба — числа. Например, имеются результаты обследования ребятишек в детском саду; выяснилось, до скольких ребенок умеет считать (признак а) и измерялся его рост (признак в). Представим графически данные, относящиеся к двум группам, старшей и младшей, откладывая по оси абсцисс признак а, а по оси ординат — признак в, так что каждому объекту (ребенку) будет соответствовать точка. Окончив эту работу, мы убедимся, что точки располагаются на графике двумя «роями» — один поближе к началу координат, другой — подальше от него; если же при построении мы наносили разными цветами точки, соответствующие объектам младшей (зеленые) и старшей (красные) групп, мы обнаружим, что совершенно очевидно первый рой образован почти исключительно зелеными точками, второй — красными.

Вычислим средние значения признаков а и в для двух групп и пометим соответствующие точки на графике (центры групп). Можно предложить следующее решающее правило: данный объект принадлежит той группе, ближе к центру которой расположена соответствующая ему точка. Это — пример так называемой геометрической интерпретации задачи распознавания образов. Если теперь нам предстоит определить на основании параметров а и в, к младшей или старшей группе принадлежит данный курносый объект, нам достаточно нанести на график соответствующую точку, измерить расстояния до центров первой и второй групп и сравнить их между собой. ЭВМ, разумеется, такую процедуру выполняет безо всяких графиков, расчетным путем. Обучение в данном случае заключалось в вычислении средних для двух групп.

Перейти на страницу:

Все книги серии Эврика

Похожие книги