Устройства видеопамяти, используемые в системах видеонаблюдения, делятся на черно-белые и цветные устройства. Качество устройства видеопамяти определяется прежде всего разрешающей способностью, то есть количеством пиксел, которые могут быть сохранены, и, во-вторых, выраженным в двоичных единицах количеством уровней серого, а в случае цветного устройства — числом бит, используемых для хранения цвета. Типичное устройство видеопамяти хорошего качества имеет более 400x400 пикселов, а обычное разрешение составляет 752x480 пикселов и 256 уровней яркости (28). Для цветного устройства видеопамяти (с тремя цветовыми каналами) мы получим более 16 млн. цветов (256x256x256).
Рис. 7.25.
Видеопринтеры обычно используются в больших системах, когда необходимо получать твердые копии «живого» или записанного изображения для их последующей оценки или использования в качестве свидетельства. Есть два типа видеопринтеров: черно-белые и цветные. В черно-белых видеопринтерах выходным носителем обычно служит термографическая бумага, но некоторые, более дорогие, модели могут выводить печать на обычную бумагу. Видеопринтеры с термографической бумагой, используемые для вывода черно-белого сигнала, работают так же, как и факсимильные аппараты: размер и разрешение выводимых изображений зависят от разрешения принтера. Отпечатки, сделанные на термографических принтерах, не долговечны и не стабильны (из-за старения термографической бумаги), и для длительного хранения приходится фотокопировать отпечатанные изображения.
Цветные видеопринтеры выводят печать на специальную бумагу, и процесс печати подобен работе принтеров с термической возгонкой красителя с использованием голубых, пурпурных, желтых и черных фильтров. Качество печати великолепное, но число копий ограничено — для каждой пачки бумаги приходится менять картридж.
Более сложные видеопринтеры обладают рядом управляющих функций, включая вставку заголовков, регулирование четкости, задание числа копий и функцию сохранения изображений в кадровой памяти принтера до вывода на печать. Во многих случаях пользователи систем видеонаблюдения не хотят инвестировать средства в видеопринтер, и тогда возникает потребность в услугах специализированных центров. Туда доставляется магнитная лента, с которой и выводятся на печать изображения, соответствующие конкретным событиям.
Рис. 7.26.
8. Аналоговые видеомагнитофоны
Совсем еще недавно видеомагнитофоны были очень важной частью любой системы видеонаблюдения (и записи), но с появлением цифровых видеорегистраторов (DVR) количество новых инсталляций систем видеонаблюдения с видеомагнитофонами стало стремительно сокращаться. Впрочем, отдавая должное старым добрым временам, когда без видеомагнитофонов нельзя было представить систему видеонаблюдения, в этом издании книги я оставил главу о видеомагнитофонах. Кроме того, если вам придется столкнуться со старой системой видеонаблюдения, то вам, возможно, понадобятся знания, изложенные в этой главе. Особое внимание уделено TL-видеомагнитофонам, которые были предшественниками цифровых видеорегистраторов.
Реально эра записи на магнитную ленту началась в 1935 г. с появления первого коммерческого звукового магнитофона фирмы AEG, названного просто Магнитофоном. В нем использовалась ацетатцеллюлозная лента, покрытая порошком карбонильного железа. Даже при том, что это были очень хорошие звукозаписывающие устройства для своего времени, их эксплуатационные показатели постоянно повышались на протяжении 30-х и 40-х годов до тех пор, пока в конце 40-х годов радиопередачи не стали выходить в записи, не отличаясь при этом по качеству от прямого эфира.
Принципы записи на магнитную ленту известны большинству из нас по старым добрым кассетным аудиомагнитофонам. Сигнал переменного тока (АС), проходя через обмотку аудиоголовки, генерирует переменный магнитный поток сквозь магнитно-проницаемое металлическое кольцо, называемое головкой. Для того, чтобы магнитный поток вышел из кольца (в противном случае, магнитный поток останется внутри сердечника), в сердечнике сделана небольшая прорезь.
Благодаря этой прорези формируется неоднородность для магнитного поля, которое выходит из сердечника и замыкается по воздуху, возвращаясь к другому концу прорези. Но если мы поместим магнитную ленту очень близко к головке, то поток будет проходить через ленту.
Магнитная лента сама по себе очень тонкая и покрыта магнитным порошком, микроскопические частицы которого действуют как небольшие магнитики. Если наложить внешнее магнитное поле, то эти небольшие частицы могут быть поляризованы в различных направлениях, в зависимости от силы тока и его направления.
Если магнитная лента неподвижна, то никакая информация не будет записана, за исключением последнего состояния магнитного поля.