После того как качественный аналоговый видеосигнал будет оцифрован согласно рекомендации ITU-601, качество цифрового видеосигнала будет почти таким же, как у исходного аналогового видеосигнала (при условии, что мы оцифровываем полный кадр). Затем на стадии сжатия происходит дальнейшее снижение качества изображения. Поэтому сжатие является фактором, ограничивающим разрешение.
Здесь следует сделать важное замечание о том, что не следует смешивать такие понятия, как количество пикселов и потеря разрешения в результате сжатия. Когда мы используем полнокадровый ввод и последующее сжатие видео, количество пикселов остается постоянным, допустим 720x576 пикселов, но артефакты сжатия могут снизить разрешение. Поэтому мы и говорим, что сжатие изображения является дополнительным фактором, ограничивающим разрешение.
Одним из наиболее частых преобразований двумерных изображений является дискретное косинусное преобразование (
DCT-преобразование основано на преобразовании Фурье. Преобразование Фурье представляет собой очень хороший метод анализа сигналов в частотной области. Единственная проблема заключается в том, что оно всегда строится на предположении о периодичности и бесконечной протяженности сигналов во временной области. В действительности это не так, и поэтому в 60-е годы было предложено альтернативное преобразование Фурье, так называемое быстрое преобразование Фурье (БПФ). Дискретное косинусное преобразование базируется на БПФ.
Итак, как работает дискретное косинусное преобразование? Пространственная избыточность присутствует во всех видеофрагментах и в видеонаблюдении, и в вещательном телевидении, и в других сферах. Если на изображении (в телевизионном поле) имеется объект, то большинство его пикселов будут иметь достаточно сходные значения. В этом и заключается избыточность изображения, то есть можно уменьшить количество информации для каждого пиксела, дав среднее значение для целой области пикселов. Крупные объекты имеют низкие пространственные частоты, а мелкие объекты — высокие пространственные частоты. Цифровое видео способно передавать весь спектр пространственных частот, но после анализа остаются только те частоты, которые нужно передать, поэтому при сжатии важным шагом является анализ пространственных частот изображения.
На рис. 9.26 показано, как работает двумерное DCT-преобразование. Изображение разбивается на блоки 8x8 пикселов. DCT-преобразование конвертирует блок значений пикселов в набор коэффициентов косинусных функций с возрастающими частотами. Коэффициенты отражают присутствие тех или иных пространственных частот. На иллюстрации показаны блоки пикселов, которые получаются из каждого коэффициента. Верхний левый коэффициент представляет среднюю яркость блока, и, таким образом, является средним арифметическим значением всех пикселов, его также называют DC-коэффициентом. Справа налево коэффициенты представляют увеличивающуюся горизонтальную пространственную частоту. Сверху вниз коэффициенты представляют увеличивающуюся вертикальную пространственную частоту. Само по себе DCT-преобразование не производит никакого сжатия информации, то есть не устраняет избыточность. На самом деле полная информация о коэффициентах займет больше места, чем информация об исходных пикселах.
Рис. 9.26.
DCT-преобразование конвертирует значения пикселов в удобную для обнаружения избыточности форму. Поскольку не все пространственные частоты присутствуют одновременно, то в результате DCT-преобразования на выходе мы получим набор коэффициентов, где будут присутствовать значимые коэффициенты, но очень многие будут иметь значения, близкие к нулю или нуль. Если коэффициент равен нулю, то неважно, присутствует ли он или нет. Если же мы отбрасываем коэффициент, близкий к нулю, то это равносильно добавлению той же пространственной частоты к изображению, но противоположной фазы. Решение отбросить коэффициент основывается на том, насколько визуально заметен будет этот небольшой нежелательный сигнал, и определяется уровнем сжатия. Если коэффициент нельзя отбросить, то сжатие также возможно за счет уменьшения количества битов, используемых для его кодирования. Визуально это выглядит так, как будто в изображении появилось немного шума. Типичным нежелательным артефактом DCT-преобразования является блочность изображения при высоких уровнях сжатия. Это связано с тем, что DCT-преобразование проводится на блоках 8x8 пикселов.
Рис. 9.27.