Большинство кожухов хорошо защищены от воздействия окружающей среды, но для некоторых специализированных систем может потребоваться еще более сильная защита. Системы, которые могут подвергнуться нежелательному вмешательству человека или механизмов, нуждаются в вандалозащищенных кожухах; в этом случае необходимо использовать специальное, небьющееся стекло (обычно лексан), а также специальные крепежные винты. Для дополнительной безопасности в систему могут быть добавлены тамперные датчики. В таком случае сигнал тревоги при вскрытии кожуха поступает в центр управления, обычно от приемника сигналов телеуправления — если в нем заложена такая опция.

И наконец, бывают пуленепробиваемые, взрывостойкие и подводные кожухи, но это редкие, специально разрабатываемые и очень дорогие приспособления. Поэтому мы не будем рассматривать их в этой книге, но если вам захочется узнать о них побольше, свяжитесь с местным поставщиком. (Отметим еще взрывобезопасные кожухи, допускающие их установку в помещениях, где категорически недопустимо искрообразование. Прим. ред.)

Рис. 12.16.Специализированный кожух с водяным охлаждением для температур до 1300 °C

Освещение в системах видеонаблюдения

Большинство систем видеонаблюдения с наружными телекамерами используют как естественные, так и искусственные источники света для улучшения условий наблюдения. Очевидно, что в системах для видеонаблюдения в помещении используются искусственные источники света, хотя в некоторых случаях освещение является смешанным, например, когда солнечный свет проникает в помещение сквозь окна.

Солнце — источник дневного света и, как ранее упоминалось, интенсивность света может меняться от 100 лк на закате до 100000 лк в полдень. Может меняться и цветовая температура солнечного света, она зависит от высоты солнца и атмосферных условий — наличия облачности, дождя, тумана и пр. Для чернобелых телекамер это не критично, но на работе цветной видеосистемы вариации освещенности будут сказываться.

Рис. 12.17.Распределение спектральной энергии различных источников света

Источники искусственного света делятся на три основные группы, в соответствии с их спектральной характеристикой:

— В первую группу попадают источники света, излучающие в процессе накаливания — это свечи, электрические лампы накаливания, галогенные лампы и др.

— Во вторую группу входят источники, излучающие вследствие прохождения электрического разряда через газ или пар — это неоновые, натриевые и парортутные лампы.

— Третья группа состоит из люминесцентных трубок, в которых газовый разряд излучает видимую или ультрафиолетовую радиацию внутри трубки, что вызывает свечение (в своей области спектра) электролюминесцентного покрытия внутренней поверхности трубки.

Источники света первой группы дают гладкий и непрерывный световой спектр, согласно формуле Макса Планка и законам излучения черного тела. Такие источники света подходят для черно-белых телекамер — благодаря соответствию спектров, особенно в левой части спектральной характеристики ПЗС-матриц.

Вторая группа источников света дает почти дискретные компоненты на конкретных длинах волн в зависимости от газа.

Третья группа дает более непрерывный спектр, чем вторая, но все же имеет и компоненты с определенными уровнями (только на конкретных длинах волн), которые, опять же, зависят от газа и типа люминесцентного покрытия.

Последние две группы очень коварны для цветных телекамер. Следует обратить особое внимание на цветовую температуру и возможности настройки баланса белого у используемых в таких случаях телекамер.

Инфракрасные осветители

В ситуациях, когда требуется видеонаблюдение ночью, можно использовать черно-белые телекамеры в комплексе с инфракрасными осветителями. Инфракрасный свет используется потому, что черно-белые ПЗС-камеры обладают очень высокой чувствительностью в инфракрасной и ближней инфракрасной области спектра. Это соответствует длинам волн больше 700 нм. Как уже упоминалось в начале книги, человеческий глаз может различать длины волн до 780 нм, причем чувствительность на длинах волн выше 700 нм очень слаба, поэтому мы говорим, что в среднем человеческий глаз видит до 700 нм.

Черно-белые ПЗС-матрицы в инфракрасной области спектра «видят» лучше, чем человеческий глаз.

Причина этого кроется в самой природе фотоэффекта (фотоны с большей длиной волны проникают глубже в структуру ПЗС-матрицы). Чувствительность в инфракрасной области спектра особенно высока у черно-белых ПЗС-матриц без инфракрасного отсекающего фильтра.

Перейти на страницу:

Поиск

Похожие книги