Смысл этого предварительного коэффициента с'(а, b) ясен. Династии, то есть векторы из vir(D), попавшие в параллелепипед P'(а, b), естественно назвать «похожими» на династию а не менее чем b. В самом деле, каждая из таких династий удалена от династии а не более, чем от династии а удалена династия b. Следовательно, в качестве меры близости двух династий а и b, мы берем долю династий, «похожих» на а не менее чем b, в множестве всех династий vir(D).

Однако такой коэффициент с'(а, b) пока недостаточно хорош, поскольку он никак не учитывает то обстоятельство, что летописцы определяли длительность правлений царей с какой-то ошибкой, причем обычно тем большей, чем дольше длительность правления. Другими словами, нам нужно учесть ошибку летописцев (3), обсужденную выше.

Перейдем к моделированию ошибки (3). Пусть T — это длительность правления. Ясно, что длительность правления можно рассматривать как случайную величину, определенную на «множестве всех царей». Обозначим через g(T) число царей, правивших T лет. В работе [884] автор настоящей книги экспериментально вычислил эту гистограмму частот g(T) (плотность распределения указанной случайной величины) на основе данных, приведенных в «Хронологических Таблицах» Ж. Блера [76]. Положим h(T) = 1/g(T) и назовем h(T) функцией ошибок летописцев. Ошибка h(T) в определении длительности T тем больше, чем с меньшей вероятностью случайная величина, — то есть длительность правления, — принимает значение T. Другими словами, небольшие, «короткие» длительности правлений царей лучше поддаются вычислению летописцев. Здесь хронист ошибается незначительно. Напротив, большие длительности правлений царей, встречающиеся довольно редко, летописец обычно вычисляет с существенной ошибкой. Чем больше длительность правления, тем большую ошибку он может совершить.

Функция ошибок h(T) для указанной плотности вероятностей случайной величины (длительности правления) была определена экспериментально [884], с. 115. Разобьем отрезок [0,100] целочисленной оси T на десять отрезков одинаковой длины, а именно: [0,9], [10,19], [20,29], [30,39],…, [90,99]. Тогда оказывается, что:

h(T) = 2, если T изменяется от 0 до 19,

h(T) = 3, если T изменяется от 20 до 29,

h(T) = 5([T/10] - 1), если T изменяется от 30 до 99.

Здесь через [s] обозначена целая часть числа s, рис. 5.21.

Рис. 5.21. Экспериментально вычисленная «функция ошибок летописцев».

Учтем теперь ошибки летописцев при построении «окрестности» точки а. Для этого расширим параллелепипед P'(а, b) до бóльшего параллелепипеда P(а, b), центром которого по-прежнему является точка а, и ортогональными проекциями на координатные оси являются отрезки с концами

[ai - |ai - bi| - h(ai), ai + |ai - bi| + h(ai)].

Ясно, что параллелепипед Р'(а, b) целиком лежит внутри большого параллелепипеда P(а, b), рис. 5.20. Половиной диагонали этого большого параллелепипеда является вектор a-b + h(a), где вектор h(a) выглядит так:

h(a) = (h(ai),…, h(ak)).

Его можно назвать ВЕКТОРОМ ОШИБОК ЛЕТОПИСЦЕВ.

Итак, мы смоделировали все три основные ошибки, делавшиеся летописцами при подсчете ими длительностей правлений царей. В качестве окончательного коэффициента с(а, b), измеряющего близость или удаленность друг от друга двух династий а и b, мы возьмем следующее число:

Ясно, что число с(а, b) является интегралом функции плотности z(x) по параллелепипеду P(а, b). На рис. 5.22 число с(а, b) условно изображается объемом призмы, имеющей в качестве основания параллелепипед P(а, b), и ограниченной сверху графиком функции z. Число с(а, b) можно, при желании, интерпретировать как вероятность того, что случайный «династический вектор», распределенный в пространстве Rk с функцией плотности z, оказался на «расстоянии» от точки а, не превышающем «расстояния» между точками а и b, с учетом ошибки h(a). Другими словами, случайный «династический» вектор, распределенный с функцией плотности z, попал в окрестность P(а, b) точки а, имеющую «радиус» a - b + h(a).

Рис. 5.22. Представление коэффициента с(а, b) в виде объема «призмы», то есть интеграла от функции z(x) по параллелепипеду Р(а, b).

Перейти на страницу:

Все книги серии История — вымысел или наука

Похожие книги