Если включить красный режим, за месяц произведём батарей на шестьдесят Квт*часов. Так и эдак прикидывал варианты, и вот что вышло. Блоки батарей обеспечат или тридцать минут хода в режиме водомётов, или час работы гребного винта (а его ещё придётся проектировать), или шесть часов тяги электролебедки. В принципе, ночами можно ставить блоки ионисторов на зарядку от свободно-поточной ГЭС. Парочки хватит за глаза. Стоп, а почему ночью? Блин, да что я туплю-то! Мини-ГЭС прицепим к монитору плавучим кабель-тросом и каждые час-полчаса будем синхронно опускать на дно для зарядки. Чем выше монитор будет подниматься по течению, тем меньше времени мы будет тратить на зарядку. Течение в верховьях реки, не сравнить, с равнинным. Эврика!
Практические замеры показали, что если немного «допилить» конструкцию, то двадцать две погружных мини-ГЭС во время коротких остановок смогут генерировать от семидесяти до ста девяносто КВт*часов. При средней скорости десять, двенадцать километров в час, за сутки можно пройти от ста до ста пятидесяти километров, что в шесть раз быстрей, чем наш, самый шустрый, катамаран. Вот это я понимаю!
Спустя месяц напряжённой работы и испытаний осматриваю монитор перед отправкой. Кормовая торцевая платформа, куда я подплываю, используется как причальная площадка. По краям стоят шарниры с водомётными двигателями и лебёдки донных, похожих на пустотелые конусы, якорей. За дверью располагаются главные потребители тока – два кольцевых электродвигателя, которые через повышающий редуктор вращают центробежные нагнетательные насосы – сердце монитора. Следующий отсек забит силовой электрикой и электроникой. В серверных стойках из профиля установлены окутанные проводами блоки ионисторов. От них, шины уходят в гудящие бочки повышающих трансформаторов. Выходящие оттуда кабели тянутся к столбам селеновых выпрямителей и продолжают бег к лампам и многочисленным блокам питания электродвигателей, обеспечивающих работу речного монитора.
Водометный движитель действует аналогично гребному винту: вода засасывается спереди, лопатки насоса, подобно лопастям винта, придают ей ускорение, после чего вода выталкивается за корму. Наш вариант значительно проще, так как импеллера, то есть винта, внутри водовода нет. При вращении насоса на засасывающей стороне его лопастей возникает разряжение, благодаря которому вода по водозаборнику поднимается к колесу. Получив ускорение, вода выбрасывается через сопло, выходное сечение которого несколько меньше, чем диаметр трубы. Физика нехитрая – уменьшение сечения преобразует давление воды в её скорость.
Рассчитать геометрические размеры выходного сопла и его гидравлическое сечение, диаметр водовода и формы подводящей трубы нетривиальная задача, и я поручил её двадцать второму звену ЦИК. Рассчитывали самый простой, щелевой водомёт. В нём даже спрямляющего аппарата нет. Функцию спрямления струи выполняет сжатое в прямоугольник сопло. Для каждой модели сопла выстраивали ступенчатую диаграмму зависимости скорости от частоты вращения насоса.
У водомёта, в отличие от гребного винта, нельзя изменять направление силы упора, путём изменения направления вращения рабочего колеса. Для изменения вектора тяги на сопло установили реверсивно-рулевую коробку, отклоняющую реактивную струю. Прямоугольную коробку сварили из бронзы и болтами затянули к литому соплу. Секторные румпели соединены шарнирно с помощью оси со штоком электроцилиндра, управление которыми выведено на рычаги в рубку. Для улучшения управляемости на рулевую коробку вручную, через РВП опускали реверсивную заслонку заднего хода отражающую струю в противоположную сторону, с ней неуклюжая с виду коробка монитора научилась мгновенно разворачиваться на месте и причаливать к берегу не хуже маневрового буксира.