Рис. 37. Кодоновое колесо – Розеттский камень, указывающий, как индивидуальные основания, или нуклеотиды, в составе ДНК кодируют конкретные аминокислоты в белке. Код каждой аминокислоты содержится в последовательности из трех нуклеотидов, которая называется кодоном. Двигаясь от центра колеса наружу, можно определить, какая аминокислота закодирована каждой из последовательностей ДНК. Например, последовательность AGC кодирует аминокислоту серин, а последовательность ACC – треонин. Для всех аминокислот, за исключением метионина и триптофана, существует более одного возможного кодона

За эту проблему брались несколько ученых-химиков, первым среди которых был Фредерик Сэнгер, английский биохимик из Кембриджского университета, уже получивший в 1958 году Нобелевскую премию по химии за разработку методики секвенирования белков. Сэнгер и его коллеги разработали метод секвенирования ДНК, предполагавший вначале разделение двух нитей и затем химическое разбиение последовательности в случайном порядке, на любом из четырех нуклеотидов в цепочке. После этого было необходимо найти молекулярную массу того, что осталось после химической реакции. Молекулярная масса продуктов определялась посредством отделения каждого из них согласно размеру в большом объеме геля. Через гель пропускался электрический ток, ввиду чего разрезанные кусочки ДНК были принуждены двигаться через гель. Самые маленькие кусочки двигались быстрее и, следовательно, дальше, чем более крупные; измеряя, насколько далеко продвинулся тот или иной кусочек, можно было вычислить, какой нуклеотид оказался на первом месте, какой – на втором, третьем и так далее. Применив эту методику, Сэнгер и его коллеги смогли секвенировать вирус PhiX174, содержащий 5375 нуклеотидов.

Их работа, опубликованная в 1977 году, была первой в истории записью геномной последовательности ДНК. Метод Сэнгера в конце концов привел к появлению технологии, позволившей секвенировать геном человека. В 1980 году Сэнгер получил вторую в своей жизни Нобелевскую премию по химии, разделив ее с Уолтером Гилбертом, независимо от него открывшим другой, несколько более трудоемкий метод секвенирования ДНК. Был и третий участник, разделивший с ними премию, – Пол Берг, биохимик из Стэнфордского университета, открывший процесс создания молекул ДНК из двух или более источников – молекул, не существующих в природе. Такие рукотворные молекулы ДНК называются рекомбинантной ДНК. Открытия этих трех ученых изменили мир не меньше, а, вероятно, даже больше, чем открытие структуры ДНК.

Разработанная Сэнгером базовая методика секвенирования посредством «обрыва цепи» не могла применяться к длинным последовательностям ДНК. Для того чтобы подступиться к проблеме секвенирования человеческого генома, содержащего 23 хромосомы, ДНК следовало разрезать на более мелкие куски. Отдельные куски уже можно было секвенировать, после чего перекрывающиеся случайные последовательности сверялись и по ним реконструировался весь геном. Этот метод, которому было дано название «метод дробовика» (термин, предложенный самим Сэнгером), был вначале разработан для микроорганизмов, а затем его применил к человеческому геному Дж. Крейг Вентер с коллегами. В самом деле, если технические аспекты секвенирования были сами по себе достаточно сложны, то реконструирование порядка генов в каждой хромосоме представляло собой еще более трудную задачу. Эта работа, на завершение которой ушло несколько лет, показала, что наш геном содержит более 3,2 млрд пар оснований, но лишь около 1,5 % из них кодируют белки. Это был один из самых больших сюрпризов, преподнесенных проектом по секвенированию человеческого генома, – у нас, оказывается, всего лишь около 20 тысяч генов, кодирующих белок, – гораздо меньше, чем предсказывалось до того, как геном был секвенирован, и всего лишь на один-два порядка больше, чем у обычных червей. Таким образом, более 97 % нашего генома содержат некодирующие области, которых нет у микроорганизмов.

Как ни парадоксально, секвенирование человеческого генома раскрыло, как относительно небольшие генетические изменения могут привести к более высокой организационной структуре животного. Важнейшие инструкции по сборке механизмов, снабжающих нас энергией и обеспечивающих синтез белков, транспортировку ионов и основной метаболизм, – все опираются на генетические платформы, унаследованные от микроорганизмов и сложившиеся миллиарды лет тому назад.

Перейти на страницу:

Все книги серии Pop Science

Похожие книги