И если уравнения СТО были простенькой сонатой, то теперь ему нужно было родить симфонию: «энергичнейшая, разнообразнейшая, захватывающая смена свершений, движение событий - только во времени, путем членения времени, его заполнения, организации, но все как бы перенесенное в конкретнодейственное по повторному трубному сигналу извне… Как все здесь схвачено и повернуто, поставлено, как подведено к теме, чтобы потом отойти от нее, раствориться, а в этом растворении уже готовится нечто новое, простой переход становится плодоносной завязью, так что не остается ни одного пустого, ни одного слабого места», и в случае успеха - «хорал неудержимо устремится вверх, мощно поддерживаемый гармоническими звуками басовой трубы, и, осиянный, достигнет вершины, чтобы тотчас же, словно бы оглядываясь со сдержанным удовлетворением на им содеянное, с честью допеть себя до конца».
Но как нам не хватает языка, чтобы рассказать, как он думал, так и ему не хватало языка, чтобы выразить рождавшиеся в мозгу ощущения и образы, - языка математического. Во время выступления в Киото в 1922 году он сказал: «Отбросить геометрию и сохранить законы - все равно что попытаться выразить мысль без слов. Чтобы выразить мысль, нужно найти сначала соответствующие слова». Прямой язык евклидовой геометрии для кривого пространства не годился. А других языков он совсем не знал. «Автобиографические наброски»: «Высшая математика интересовала меня в годы учения мало, потому что я по своей наивности полагал, что для физика достаточно овладеть лишь основными математическими понятиями. Все же остальное в математике, думал я, является несущественными для познания природы тонкостями». Он еще в Праге взывал к миру о помощи, в его июльской статье есть фраза: «…пространственновременные координаты теряют свой простой физический смысл, и нельзя предвидеть, какую форму могут иметь общие уравнения пространственновременных преобразований. Хочу предложить всем специалистам попробовать свои силы в решении этой важной задачи!»
Штерн ему помочь не смог. Минковский, может, смог бы, но он умер в 1909 году. Пуанкаре умер только что. И он обратился за помощью к Гроссману. Он слышал, что существует какаято геометрия Гаусса, но, возможно, есть чтонибудь и покруче? На следующий день Гроссман доложил, что подходящий язык есть - это риманова геометрия. Пайс: «Но, добавил Гроссман, это ужасная каша, в которую физику нечего и соваться. Тогда Эйнштейн спросил, есть ли другие геометрии, которые можно было бы использовать. Нет, ответил Гроссман».
Что такое риманова геометрия, в первом приближении знает и «лирик»: та, где параллельные прямые могут пересечься. Представить это на бытовом уровне легко: сходятся же меридианы на глобусе. Иногда русскоязычные авторы (не только «страшилочные») пишут, что Эйнштейн, упомянув о Римане, нарочно не назвал геометрию Лобачевского, которая появилась раньше. На самом деле было так: первую неевклидову геометрию придумал для искривленных пространств немец Карл Гаусс; его идеи развили Лобачевский, Риман и Янош Бойяи. Геометрия Лобачевского - Бойяи описывает поверхность вогнутую, как седло, геометрия Римана - выпуклую, как сфера. Кроме того, Риман целиком пересмотрел геометрию Евклида и предложил свои принципы построения геометрий, из которых следовало, что неевклидовых геометрий может быть целая куча. Поэтому есть термин «риманова геометрия» - сумма всяческих «кривых» геометрий, охватывающая все частные случаи. Ее и предложил Эйнштейну Гроссман. И стали работать - правда, Гроссман оговорился, что отвечает только за «чистую» математику. 29 октября Эйнштейн писал Арнольду Зоммерфельду, заведующему кафедрой теоретической физики Мюнхенского университета: «…я занят исключительно проблемой гравитации и думаю, что теперь мне удастся преодолеть все трудности с помощью моего друга математика. Но одно мне совершенно ясно: что никогда в жизни мне еще не приходилось так много работать и что я проникся величайшим уважением к математике, наиболее изысканные области которой я до сих пор по неразумению считал ненужной для меня роскошью. По сравнению с этой проблемой первоначальная теория относительности не более чем детская игра!»