Взрыв на Эниветоке был такой мощности, что породил новый элемент. Как это стало известно? Дело в том, что испытания не ограничивались интересом «взорвется или нет» – тонны материалов, отобранных с места выпадения радиоактивных осадков во время испытания, были отправлены в радиационную лабораторию Беркли. Там среди сгоревших кораллов и пепла Альберт Гиорсо обнаружил атомы элемента с номером 99, который в апреле 1955 года получил название «эйнштейний» (первоначально для обозначения эйнштейния использовался символ «Е», к привычному сейчас символу «Es» перешли в 1960-е годы). Создание и испытания Сосиски были засекречены, и об открытии нового элемента сообщили только спустя три года. В августе 1955 года в журнале Physical Review была опубликована статья об открытии элемента № 99, в которой его предлагали назвать эйнштейнием (Phys. Rev. 1955. 99 (3): 1048–1049).

Как же образовался эйнштейний? Во время взрыва некоторые атомы урана из атомной бомбы-запала смогли поглотить колоссальное количество нейтронов, превратившись на долю мгновения в сверхтяжёлые изотопы урана, которые претерпевали β-распад, в результате чего (если упрощать) «лишние» нейтроны превращались в пары протон-электрон, и порядковый номер элемента увеличивался. Энергия и плотность потока нейтронов во время испытания были столь значительны, что некоторые атомы урана с номером 92 превратились в атомы с номерами 99 и 100. При испытаниях образовался эйнштейний 253Es.

К счастью сейчас, если есть необходимость в эйнштейнии (а такая необходимость может возникнуть, так как этот элемент – хорошая мишень для получения ещё более тяжёлых атомных ядер), нет необходимости взрывать термоядерные боеприпасы. Современный способ получения эйнштейния заключается либо в длительной (продолжающейся несколько лет) бомбардировке плутония нейтронами, либо в бомбардировке урана ядрами азота или кислорода. Сам по себе эйнштейний представляет собой серебристо-белый металл, достаточно летучий и с умеренной для столь тяжёлого элемента температурой плавления – 860 °C. В своих соединениях эйнштейний проявляет степень окисления +2 и +3, известны и изучены такие соединения элемента № 99, как Es2O3, EsCl3, EsOCl и EsBr2.

<p>100. Фермий</p>

Круглые даты и числа всегда привлекали внимание людей, возможно из-за того, что благодаря нашим пятипалым рукам наши далекие предки выбрали десятеричную систему счисления. Заметим, что круглых дат опасались не только в Средние века, ожидая конца времен вот каждого года, кончавшегося двумя нулями – если кто ещё помнит, в 1998–99 годах ходили слухи о так называемой «проблеме 2000», которая идеологически была близка средневековым страданиям в ожидании скорого конца. Тем не менее, заселение электронов по уровням, и, следовательно, Периодический закон и Периодическая система индифферентны к числам, кратным десяти, благодаря чему элемент с номером 100 нельзя назвать каким-то особенным.

Фермий, как и стоящий на одну клеточку раньше эйнштейний, был впервые обнаружен в радиоактивных осадках, образовавшихся в результате испытания первого термоядерного устройства. Собственно, в статье, вышедшей спустя три года после испытания, на двух страницах сообщалось о двух элементах (Phys. Rev. 1955. 99 (3): 1048–1049). Причина образования фермия была такая же, как и эйнштейния – уран, входивший в состав атомной бомбы-запала поглощал большое количество нейтронов, и образующиеся при этом ядра за счет β-распада увеличивали число протонов, а значит – порядковый номер.

Перейти на страницу:

Поиск

Все книги серии Научпоп Рунета

Похожие книги