В том, что лютеций оказался последним открытым лантаноидом, две причины. Во-первых, по мере увеличения атомного номера химического элемента его содержание в земной коре уменьшается, а распространённость элементов с чётными атомными номерами (как у соседнего с лютецием иттербия) выше, чем у элементов с нечётным атомным номером – эти критерии распространённости химических элементов в земной коре называются правилом Отто-Гаркинса. Во-вторых, так как у лютеция полностью заполнен 4f-электронный подуровень, он не образует окрашенных соединений и не демонстрирует чётких спектральных линий, благодаря чему его было легко «просмотреть». Самый распространённый в земной коре лантаноид – церий, лютеций – наименее распространённый, его в земной коре гораздо меньше, чем серебра, золота и некоторых металлов платиновой группы, что делает лютеций самым дорогим лантаноидом. Лютеций еще и отличается и самым маленьким радиусом среди лантаноидов, и есть исследователи, которые полагают, что в клетке Периодической системы между барием и гафнием должен стоять именно лютеций (с декабря 2016 года по рекомендациям ИЮПАК эта клетку рекомендуются оставлять пустой). Металлический лютеций – серебристо-белый металл, активность которого в реакциях с кислородом воздуха и водой сравнима с активностью магния.

Наибольшее количество лютеция применяется в нефтехимической промышленности – его оксид работает в качестве катализатора крекинга углеводородов. Нуклид 177Lu применялся в радиотерапии рака. Ионы лютеция также используется для легирования гадолиний-галлиевых искусственных гранатов, применявшихся для создания компьютерной памяти, работающей за счёт организации цилиндрических магнитных доменов, которая, правда, довольно быстро была заменена жёсткими дисками с современной архитектурой.

Трифлат (трифторметлилсульфонат) лютеция показал себя эффективным и рециклизуемым катализатором органических реакций, протекающих в воде. Органический синтез в воде в последнее время становится очень популярным – он позволяет обходиться без летучих и токсичных органических растворителей. Тем не менее, высокая стоимость трифлата лютеция вряд ли сделает его более популярным, чем менее эффективные, но более дешёвые трифлаты других лантаноидов.

<p>72. Гафний</p>

Элемент № 72, открытый в 1922 году в Копенгагене и получивший название гафний в честь города, где было сделано открытие (Hafnia – латинское название Копенгагена), стал ещё одним подтверждением Периодического закона.

Открытие, облегчившее поиски новых химических элементов и выявляющее точное количество пустых клеток Периодической системы, было сделано в 1913 году, когда Генри Мозли предложил метод распределения элементов по их атомным номерам, заменив предложенную Менделеевым сортировку по атомной массе. Закон Мозли демонстрировал, что между уже открытыми лютецием (№ 71) и танталом (№ 73) должен находиться ещё один элемент.

Ситуация с семьдесят вторым осложнялась тем, что уже было непонятно, к какому типу металлов он относится – лютеций проявлял свойства редкоземельного элемента (понятие «лантаноиды» тогда ещё не появилось), а тантал – переходного металла, поэтому мнения разделились – большая часть химиков считала, что № 72 будет очередным редкоземельным металлом, продолжая делить на фракции иттербит или гадолинит и другие редкие земли. Тем не менее, часть исследователей на основании того, что в Периодической системе элемент № 72 располагался под клетками типичных переходных металлов – титана и циркония, относили этот элемент к переходным металлам. Знать то, к какому типу относится новый элемент ещё до его открытия было важно для принятия решения о том, в каких минералах его следует искать, и какие подходы для выделения использовать. В конечном итоге в споре химиков решил поучаствовать физик Нильс Бор, который рассмотрел менделеевскую периодичность через призму физики – строения атома. Причина периодичности свойств элементов по Нильсу Бору заключалась в периодическом повторении строения внешнего электронного уровня атома, и электронная конфигурация элемента № 72, предложенная Бором, тоже позволяла относить его к переходным металлам.

Перейти на страницу:

Поиск

Все книги серии Научпоп Рунета

Похожие книги