Размышляя о проблемах движения, в которых для демонстрации [per dimostrare] наблюдаемых мною свойств мне недоставало совершенно несомненного принципа, который можно было бы принять за аксиому, я пришел к положению, которое было вполне естественным и очевидным; и предположив это, я доказывал и все остальное, а именно что пройденные при естественном движении расстояния пропорциональны квадратам времени и, как следствие, пройденные расстояния в равные промежутки времени подобны нечетным числам начиная от единицы и прочие вещи. И принцип таков: естественно движущееся тело перемещается, увеличивая скорость в той же пропорциональности, как [когда] оно отдаляется от начала своего движения; как, например, когда тело падает от точки А по линии ABCD, я предполагаю, что отношение степени скорости, которой тело обладает в точке С, к степени скорости, которая была у него в точке B, равно отношению расстояния СА к ВА, и следовательно, в точке D тело будет иметь бóльшую степень скорости, чем в точке С, сообразно тому, как расстояние DA больше, чем CA.
Этот весьма любопытный текст, который чуть позже мы сравним с текстом Декарта, очень хорошо указывает на характерную черту логики Галилея. То, что он ищет, ни в коей мере не дескриптивная формула, с помощью которой можно было бы рассчитать наблюдаемые и измеряемые величины феномена свободного падения, его «свойств» – скорости, пройденного расстояния и т. д. Совсем напротив: Галилей уже располагает такой формулой (оставим в стороне вопрос о том, как ему удалось ее получить)186; он уже знает, что расстояния, пройденные в равные промежутки времени, соотносятся между собой как последовательность нечетных чисел; ему также известно, что пройденное расстояние пропорционально квадрату времени… И однако он ищет что-то еще, и то, что он ищет, – это не логическая или математическая связь, соединяющая эти два положения (совершенно ясно, что ему было известно, какова эта связь); он ищет основополагающий и очевидный «принцип», позволяющий вывести или, как говорит Галилей, «продемонстрировать» некоторые свойства движения свободного падения. Можно было бы сказать, применяя к Галилею слова современного физика, что он нисколько не доверял наблюдению, которое нельзя верифицировать теоретически. Эпистемология, которую представляет Галилей, отвечает не позитивистскому идеалу, а архимедовскому187.
Иными словами, Галилей располагает законом свободного падения тел. Но он считает, что этого недостаточно, поскольку этот закон нам дан лишь как факт, но его причины нам неизвестны. Тела падают вниз – это факт. Кроме того, когда они падают, их движение ускоряется. Расстояния, которые они пересекают при падении, соотносятся между собой как последовательность нечетных чисел. Но почему это так? Галилей считает, что это следует выяснить.
Давайте же разберемся. По мнению Галилея, понять и объяснить необходимо не сам факт свободного падения тела: речь не идет о том, чтобы найти причину, по которой тела падают вниз188. То, что он ищет, – это сущность движения свободного падения. Движение, которое производят падающие тела, в действительности очень специфично: это вполне определенный вид, образ движения, оно всегда одинаково и происходит всегда, когда тела падают. Именно природу этого образа движения, его сущность или, если угодно, его определение (что одно и то же) – вот что необходимо отыскать. Именно это образует ясный и несомненный принцип, основополагающую аксиому, позволяющую вывести все прочее.