В обеих концепциях импетусы производятся в каждый момент времени; куда более ясно, чем кто-либо из последующих мыслителей, это сформулировал еще Леонардо да Винчи:

Свободно падающий груз с каждой единицей времени приобретает единицу движения, а с каждой единицей движения – единицу скорости208.

***

Как же случилось, что и сам Леонардо, вслед за ним Бенедетти, а после него и Мишель Варрон утверждали, что скорость пропорциональна не истекшему времени, а пройденному расстоянию? Очевидно, они полагали, что эти два утверждения равнозначны, и это имеет очень простое объяснение: каждому моменту времени действительно соответствует один пройденный промежуток пути. Хотя, как говорит Дюэм209,

чтобы вывести из закона, гласящего, что скорость движения тела пропорциональна времени падения, другой закон, согласно которому пройденное телом расстояние пропорционально квадрату времени падения, Леонардо было необходимо знать понятие мгновенной скорости или, иными словами, понятие флюксии или производной,

для того чтобы увидеть, что, хотя и существует взаимно однозначное соответствие между отрезками времени (моментами) и пройденными отрезками расстояния, эти две величины все же не равны, Леонардо и его последователи, безусловно, должны были иметь представление о базовых понятиях интегрального исчисления.

Впрочем, после Архимеда, после Николая Орема, быть может, это требование не было бы чрезмерным по отношению к ним. Но не будем слишком строги; не будем порицать Леонардо и Бенедетти, наблюдая за тем, как они, используя неоднозначное понятие длящегося движения, резво переходят от времени к расстоянию, от длительности движения к траектории пути. Проще (и естественней) видеть, т. е. представлять в пространстве, нежели мыслить во времени.

Дюэм дает прекрасное объяснение того, почему ни Леонардо да Винчи, ни Бенедетти не смогли сформулировать точный закон свободного падения и почему лишь Галилею довелось это сделать. Однако он все же не объясняет, почему из двух равнозначных отношений или по крайней мере отношений, которые считались равнозначными (скорость, пропорциональная затраченному времени, и скорость, пропорциональная пройденному расстоянию), Леонардо, а вслед за ним Галилей и Декарт решительно делают выбор в пользу второго. Причина этого нам кажется одновременно очень глубокой и очень простой: она целиком и полностью заключается в той роли, которую сыграли в науке Нового времени геометрические построения и относительная ясность пространственных отношений210.

Процесс, в результате которого возникла классическая наука, состоит в попытке рационализации физики, иными словами, геометризации пространства и математизации законов природы. По правде сказать, речь идет об одном и том же, поскольку геометризация пространства означает не что иное, как применение законов геометрии к описанию движения. И как еще было возможно описать нечто математически до Декарта, если не с помощью геометрии?

Перейти на страницу:

Поиск

Все книги серии История науки

Похожие книги