До недавнего времени из-за высокой стоимости солнечных элементов они применялись либо в космонавтике, либо в местностях, отдаленных от линий электропередачи, либо в особых видах изделий, где затраты энергии минимальны. Сейчас цена на эти элементы быстро падает: за последние 10 лет она понизилась в 3,5 раза. В этом заслуга химиков, разработавших новые способы получения кремниевых солнечных элементов.

Обычно солнечные элементы изготавливают из монокристаллических кремниевых стержней, выращиваемых в лаборатории. Их разделяют на маленькие пластинки, которые затем собирают в панели. Сейчас все большее внимание уделяется поликристаллическому и аморфному кремнию. Ему придают форму пленки толщиной I микрометр. КПД элементов на аморфном кремнии составляет 6-10 процентов, а на монокристалле - 12-16 процентов, но первые значительно дешевле, так как для их создания не требуется материала высокой чистоты.

Вполне вероятно, что для наших еж- квартир и производственных помещении ний в ближайшем будущем не понадоком бится столько тепла, как сегодня. Сейчас ведется разработка нового строимая тельного материала, призванного обеслуа- лечить 50-процентную экономию тепную шповой энергии при обогреве зданий.

Это -важнейшее свойство нового материала заключается в том, что он пропускает солнечный свет, но задерживает тепло.

Стенки здания, покрытые прозрачными панелями из этого материала, обогреваются солнечной энергией. При этом не происходит обратной отдачи тепла. Путь накопленной тепловой энергии открыт только внутрь здания.

Даже в холодное время Солнце будет поставлять значительную часть тепла, необходимую для обогрева здания...

Здесь затронуты лишь немногие вопросы снабжения человечества энергией. Не следует думать, будто химики не участвуют в разработке других, не упомянутых здесь источников энергии.

Например, ядерная энергетика начинает осваивать торий. Состояние воды в водохранилищах, обязанных своим возникновением гидроэнергетике,- предмет забот гидрохимиков. Словом, химики вносят значительный вклад в реализацию энергетической программы человечества.

Твердый огонь

Веками казалось бесспорным: чтобы получить сплав двух твердых веществ, нужно сначала расплавить их.

Но доктор физико-математических наук Александр Мержанов и его помощники доказали, что правило это отнюдь не абсолютно. Высокотемпературные печи становятся атрибутами устаревшей, а главное, неэкономичной технологии. Их заменяет реактор, в котором бушует огонь без пламени - твердый огонь...

Эксперимент

В Институте химической физики Академии наук СССР в Москве изучалась теоретическая проблема, связанная с горением. Обычно оно разрушает исходные материалы, переводя их в газообразное состояние, а доктор Мержанов поставил перед своими ассистентами Инной Боровинскои и Валентином Шкиро задачу найти вещества, которые, сгорая, не выделяли бы газов.

Испытывали одно сочетание за другим и вот спрессовали в достаточно большую таблетку смесь титана с бором и подожгли, подведя проволочную спираль, нагреваемую током. От точки контакта со спиралью по таблетке быстро распространился ярко светящийся фронт. Исследователи полюбовались эффектным зрелищем, определили, какие процессы под влиянием теплового импульса прошли в смеси, и только потом случайно обратили внимание на то, что таблетка не расплавилась, не потеряла форму, но стала плотной и твердой. Состав слитка представлял собой соединение бора и титана диборид титана - вещество, известное высокими абразивными свойствами.

Обычно, чтобы получить такой сплав, нужно смесь двух порошков нагреть в специальной печи. Поскольку оба вещества отличаются тугоплавкостью и упрямо не желают вступить в реакцию между собой, требуется температура около полутора тысяч градусов и несколько часов времени. А в лаборатории Мержанова, чтобы получить тот же самый сплав, потребовалось несколько секунд. Поначалу это показалось невероятным, и скептики рассматривали случай с диборидом титана как некий лабораторный курьез: мало ли что бывает во время экспериментов!..

Что же произошло в таблетке!

Скептицизм опирался на здравый смысл: если получился сплав, куда же девалось пламя? Всякая металлургия ассоциируется с жаром печей, с огненными потоками жидкого металла. Вот что говорит по этому поводу Александр Мержанов:

- С точки зрения специалиста, огонь - это вовсе не обязательно пламя. Горение-сложная химическая реакция. Если в ходе этой реакции исходные компоненты плавятся или переходят в газообразное состояние, то они взаимодействуют легко и быстро.

Перейти на страницу:

Все книги серии Эврика

Похожие книги