* В системе, которой пользуется здесь автор, В=Н+1/e0c2 М, но

D=e0E+P. В старой, доброй системе единиц писали В=m0Н=(1/e0c2)Н и

D=e0Е или В=(Н+4pМ) и D=Е+4pР. Надо быть очень внима­тельным, когда формулы для магнетиков пишутся по аналогии с формулами для диэлектриков (ср. § 6).— Прим. ред.

* Или, если хотите, ток I на каждой грани может быть поровну; распределен на кубиках с двух сторон.

* Если бы все «другие» заряды находились на проводниках, то rдр было бы тем же самым, что и rсвоб в гл. 10 (вып. 5).

Глава 37

МАГНИТНЫЕ МАТЕРИАЛЫ

§ 1.Сущность ферромагнетизма

§ 2.Термодинамические свойства

§ 3. Петля гистерезиса

§ 4.Ферромагнитные материалы

§ 5.Необычные магнитные материалы

§ 1. Сущность ферромагнетизма

В этой главе мы поговорим об особенностях и поведении ферромагнетиков и некоторых дру­гих необычных магнитных материалов. Но перед тем как приступить к этой теме, я сделаю ма­ленький обзор некоторых вопросов общей тео­рии магнитов, которые мы изучали в предыду­щей главе.

Мы сначала представили себе «магнитные» токи, текущие внутри материала и порождаю­щие магнетизм, а затем стали их описывать через объемную плотность токов jмar=СXM. Заметьте, что эти токи нереальные. Даже когда намагниченность вещества однородна, токи в нем на самом деле не исчезают полностью: кру­говые токи электрона в одном атоме и круговые токи электрона в другом атоме, перекрываясь, не дают в сумме точно нуль. Даже внутри каждого отдельного атома распределение магне­тизма не очень гладкое. В атоме железа, напри­мер, намагниченность распределена более или менее по сферической поверхности не слишком близко к ядру, но и не слишком далеко от него. Таким образом, магнетизм в веществе — вещь довольно сложная в своих деталях и весьма нерегулярная. Но сейчас мы должны об этих сложностях забыть и рассматривать явление, пользуясь более грубой усредненной моделью. Только тогда становится верным утверждение о равенстве нулю среднего тока при М=0 в ог­раниченной внутренней области, большой по сравнению с размерами атома. Таким образом, под магнитным моментом единицы объема (намагниченностью) и под jмаг и т. п. на нашем теперешнем уровне рассмотрения мы понимаем среднее по областям, большим по сравнению с пространст­вом, занимаемым отдельным атомом.

В предыдущей главе мы обнаружили, что ферромагнитные материалы обладают следующим интересным свойством: при температурах выше некоторой их магнитные свойства проявля­ются слабо и лишь ниже этой температуры они становятся сильными магнетиками. Этот факт легко продемонстрировать. Кусок никелевого провода при комнатной температуре притя­гивается магнитом. Но если мы его нагреем в пламени газовой горелки выше температуры Кюри, то он станет практически немагнитным и не будет притягиваться к магниту, даже если мы поднесем его совсем близко. Если же оставить его остывать возле магнита, то в тот момент, когда его температура упадет ниже критической, он внезапно снова притянется к магниту!

В общей теории магнетизма, которой мы пользуемся, пред­полагается, что за намагниченность ответствен спин электрона. Спин электрона равен 1/2 и сопровождается магнитным момен­том, равным одному магнетону Бора: (m=mb=qeh/2m. Спин электрона может быть направлен либо вверх, либо вниз. Поскольку заряд электрона отрицателен, то магнитный момент его направлен вниз, когда спин направлен вверх, и направлен вверх, когда спин направлен вниз. В соответствии с нашим обычным соглашением магнитный момент электрона (А — число отрицательное. Мы нашли, что потенциальная энергия магнит­ного диполя в заданном приложенном поле В равна—m·B. Энергия вращающегося электрона зависит также и от распо­ложения соседних спинов. Если в железе момент соседнего атома направлен вверх, то момент следующего атома имеет сильную тенденцию тоже направиться вверх. Именно это делает железо, кобальт и никель такими сильными магнети­ками — все моменты атомов в них стремятся быть параллель­ными. И вот первый вопрос, который мы должны обсудить, — почему так происходит?

Перейти на страницу:

Поиск

Похожие книги