Контрольный вопрос 8.2.Предположим, что доходность бескупонных облигаций со сроком погашения через 2 года упала до 6% в год, но остальные ставки, указанные в табл. 8 1, остались неизменными. Какова будет приведенная стоимость трехгодичного аннуитета по которому выплачивается 100 долл. в год? Какая единая дисконтная ставка, используемая в формуле приведенной стоимости, даст аналогичный результат?

ОТВЕТ. Стоимость трехлетнего аннуитета составит:

Приведенная стоимость ожидаемых поступлений за 1-й год = 100 долл. / 1,0526 =95,00 долл.

Приведенная стоимость ожидаемых поступлений за 2-й год = 100 долл. / 1,062 =89,00 долл.

Приведенная стоимость ожидаемых поступлений за 3-й год = 100 долл. / 1,07723 =80,00 долл.

Суммарная величина приведенной стоимости = 264 долл.

Таким образом, стоимость аннуитета возрастет на 1 долл.

Для того чтобы определить единую дисконтную ставку в соответствии с которой приведенная стоимость всех трех ожидаемых платежей равнялась бы 264 долл., необходимо использовать следующий вариант решения с помощью финансового калькулятора:

n

i

PV

FV

PMT

Результат

3

?

-264 долл.

0

100

i = 6,6745%

Контрольный вопрос 8.3.Какой будет текущая доходность и доходность при погашении трехлетней облигации, ценой приобретения 900 долл. и с купонной доходностью 6% в год?

ОТВЕТ. Текущая доходность составит —— = 0,067 = 6,67% Значение доходности при погашении рассчитывается следующим образом:

л

1

PV

FV

РМГ

Результат

2

-900

1000

60

100

1=10,02%

Контрольный вопрос 8.4.Используя те же самые цены, что и на бескупонные облигации, предложенные в предыдущем примере, определите цену и доходность при погашении двухгодичной купонной облигации с купонной доходностью 4% в год.

ОТВЕТ. Цена на облигацию с 4%-ной купонной доходностью равна:

0,961538 х 40 долл. + 0,889996 х 1040 долл. = 964,05736 долл. Доходность при погашении:

п

i

PV

FV

PMT

Результат

2

?

964,057

1000

40

i = 5,9593%

контрольный вопрос 8.5. Какой будет цена бескупонной облигации через два года, если годность зафиксируется на уровне 6% в год? Удостоверьтесь, что величина пропорционального изменения цены во втором году составит 6%.

ОТВЕТ. По истечении двух лет до окончания срока погашения останется 18 лет и цена облигации будет равна:

n

i

PV

FV

PMT

Результат

18

6

7

1000

0

PV= 350,34 долл.

Таким образом, величина пропорционального изменения цены облигации точно соответствует ее доходности (6% в год):

Пропорциональное изменение цены = (350,34 долл. – 330,51 долл.) / 330,51 долл. = 6%

Контрольный вопрос 8.6.Предположим, что вы купили бескупонную облигацию с доходностью 6%, сроком погашения 30 лет и номиналом 1000 долл. На следующий день рыночные процентные ставки поднялись до 7%, что привело к повышению доходности вашей облигации до 7%. Какова будет величина пропорционального изменения цены облигации?

ОТВЕТ. Исходная цена бескупонной облигации со сроком погашения 30 лет равна:

n

i

PV

FV

PMT

Результат

30

6%

?

1000

0

PV =174,11 долл.

На следующий день ее цена будет равна:

n

i

PV

FV

PMT

Результат

30

7%

?

1000

0

PV= 131,37 долл.

Величина пропорционального снижение цены составит 24,55%.

Вопросы и задания

Оценка облигаций с равномерной структурой платежей

Шаблон8.1-8.3

1. Предположим, вам необходимо определить цену 7%-ной купонной о6-лигации Казначейства США со сроком погашения 10 лет с ежегодной выплатой процентов.

а. Вы узнали, что доходность при погашении составляет 8%. Какова будет цена облигации?

Ь. Какова будет цена облигации, если купонные платежи осуществляются раза в полгода, а доходность при погашении составляет 8%?

Перейти на страницу:

Поиск

Похожие книги