где Е
E (r)= 0,06 + w (0,14-0,06) = 0,06 + 0,08w
Уравнение 12.1 интерпретируется следующим образом. Базовой ставкой доходности для любого портфеля является безрисковая ставка доходности (0,06 в нашем примере). Кроме того, предполагается, что инвестиции в портфель принесут дополнительную премию за риск, которая зависит от (1) премии за риск по рискованному активу
Чтобы определить состав портфеля, соответствующий ожидаемой ставке доходности в 0,09, надо подставить нужные значения в уравнение 12.1 и вычислить
0,09=0,06+0,08w
(0.09-0,06), 0,08
Таким образом, портфель на 37,5% состоит из рискованного актива, а на 62,5% — из безрискового.
Этап 2. Определите связь между стандартным отклонением и долей инвестиций, приходящихся на рискованный актив.
Если в одном портфеле объединены рискованный и безрисковый активы, то стандартное отклонение доходности такого портфеля равно стандартному отклонению доходности рискованного актива, умноженному на его вес в портфеле. Обозначив стандартное отклонение рискованного актива как
Чтобы определить стандартное отклонение, соответствующее ожидаемой ставке доходности в 0,09, подставим в уравнение 12.2 вместо
Таким образом, стандартное отклонение доходности портфеля составило 0 075. Наконец, мы можем убрать w, чтобы вывести формулу, напрямую связывающую ожидаемую ставку доходности со стандартным отклонением на прямой риск/доходность.
Этап 3. Определите соотношение между ожидаемой ставкой доходности и стандартным отклонением.
Чтобы вывести точное уравнение, описывающее прямую риск/доходность на рис 12.1, надо видоизменить уравнение 12.2 и представить
Другими словами, ожидаемая ставка доходности портфеля, выраженная как функция его стандартного отклонения, представляет собой прямую линию, пересекающую вертикальную ось в точке
Угол наклона прямой характеризует дополнительную ожидаемую доходность, предлагаемую рынком для каждой дополнительной единицы риска, которую согласен нести инвестор.
12.2.3. Как получить заданную ожидаемую доходность: пример 1
Давайте определим состав портфеля, ожидаемая ставка доходности которого соответствовала бы значению 0,11 в год. Каким будет в этом случае стандартное отклонение доходности?
Решение
Чтобы определить состав портфеля с ожидаемой ставкой доходности в 0,11, нэл0 подставить данные в уравнение 12.1 и найти
0,11 =0,06+0,08w
Следовательно, в портфеле содержится 62,5% рискованного актива и 37,5% безрискового.
Чтобы определить стандартное отклонение, соответствующее ожидаемой ставке доходности в 0,11, надо в уравнении 12.2 вместо
= 0,
Следовательно, стандартное отклонение доходности портфеля равно 0,125
Контрольный вопрос 12.6
Где будет находиться пересечение прямой риск/доходность с осью OY и каков будет
12.2.4. Концепция эффективности портфеля
Эффективным портфелем (efficient portfolio) мы называем такой портфель, который предлагает инвестору максимально возможный ожидаемый уровень доходности при заданном уровне риска.
Чтобы объяснить значение концепции эффективности портфеля и показать, как получить действительно эффективный портфель, давайте рассмотрим предыдущий пример, дополнительно включив в него еще один рискованный актив. Рискованный актив 2 имеет ожидаемую ставку доходности 0,08 в год и стандартное отклонение 0.15. Он представлен точкой
Инвестор, который хоче1 получить ожидаемую ставку доходности в 0.08 годовых, может добиться своей цели, вложив всю сумму в рискованный актив 2. Тогда он окажется в ситуации, описываемой точкой