Начальный курс акций составляет 100 долл. (точка А). Вначале осуществляется покупка 1/2 пакета акций за 50 долл., для чего берется заем в размере 45 долл. Таким образом, чистое вложение собственных денежных средств составляет 5 долл. В конце первого шестимесячного периода курс акций составляет либо 110 долл. (точка В), либо 90 долл. (точка С). 13сли ситуация соответствует точке В, следует дополнительно получить заем в размере 55 долл. и купить вторую половину пакета акций. Если же реализуется ситуация, описываемая точкой С, то следует продать акции и погасить заем в 45 долл. Применение такой стратегии обеспечивает к концу года в точности те же денежные платежи, что и реализация опционного контракта.

Данная стратегия после первоначального вложения денежных средств основана на полном самофинансировании. Это означает, что до даты истечения опциона инвестор не вносит дополнительных средств и не забирает средств. Данный результат следует ив того, что, поскольку начальные затраты на применение самофинансирующейся динамической стратегии для формирования портфеля, дублирующего денежные платежи по опциону, составляют 5 долл., в соответствии с законом единой цены сумма в 5'долл. и должна выражать стоимость опциона.

(Рассмотренная выше модель оценки стоимости опциона более совершенна, чем двухступенчатая модель. Она называется биномиальной моделью оценки стоимости опциона11 (Ыпопиа! орйоп-рпств тоае1). Большая реалистичность и точность в биномиальной модели достигаются при делении промежутка времени в один год на все меньшие и меньшие интервалы. Биномиальные модели оценки стоимости опционов широко применяются на практике. Число используемых промежутков времени зависит от требуемой в данном конкретном случае точности.

15.7. МОДЕЛЬ ЦЕНООБРАЗОВАНИЯ ОПЦИОНОВ БЛЭКА-ШОУЛЗА

Рабочая книга Более реалистичная и часто используемая на практике модель оценки стоимости опционов на акции — это модель Блэка—Шоулза". При ее выводе используются соображения, аналогичные 15.7 описанным выше, однако при этом предполагается осуществление непрерывной корректировки дублирующего портфеля.

В исходную формулу Блэка—Щоулза для определения цены европейского опциона "колл", входят пять параметров, значение четырех из которых доступны инвесторам:

курс акций 5, цена исполнения Е, безрисковая процентная ставка (непрерывно начисляемая процентная ставка в пересчете на год для безрисковых ценных бумаг со сроком погашения, равным сроку истечения опциона) г, и промежуток времени до срока истечения опциона Т.

Эта формула имеет вид:

(15.4)

где 13

С — цена опциона "колл"

•У — курс акций

Е — цена исполнения опциона .

К -— безрисковая процентная ставка (непрерывно начисляемая процентная ставка

(в пересчете на год) для безрисковых ценных бумаг со сроком погашения, равным сроку истечения опциона))

Г—промежуток времени до срока истечения опциона в годах

а— риск подлежащей акции, измеряемый стандартным отклонением доходности акции, представленной как непрерывно начисляемый процент (в расчете на год)

1п—натуральный логарифм

е — основание натурального логарифма (приблизительно 2,71828)

М(а) — вероятность того, что значение нормально распределенной переменной меньше /

"По «опросам, связанным с развитием биномиальной модели, см. Сох, Лож$, ат1 КиЫпЛет, "Ор1юп Рпсту А ЗтрН^еЛ АрргоасН ", Лита! о/ Ппапсю! есопопчс!, 7 (1979), 229-263.

12 РксНег В1ас1с, ап(1 А/угоп ИсШез, "ТНе рпст^ о/ ОрИом апй ОЛег Согрога1е ЫаЫИИе5 ", Лита1 о/РоПНса! Есопоту, 81 (Мау/Лпе 1973).

13 Непрерывно начисляемая ставка доходности равна натуральному логарифму (1+ ставка доходности).

Выражение для стоимости опциона "пут" можно получить, произведя подстановку величины С из уравнения паритета опционов "пут" и "коля", т.е. воспользовавшись соотношением Р = С - 8 + Ее'^. В результате получаем формулу для нахождения стоимости опциона "пут":

При выводе своего уравнения Блэк и Шоулзпредположили, чтоДо даты истечения опциона выплата дивидендов не производится. Мертон обобщил эту модель, добавив к ней возможность получения постоянного дивидендного дохода,' №14 В результат^ была получена формула для оценки стоимости опциона с учетом дивидендов:

(15.5)

Обратите внимание на тот факт, что ожидаемая доходность акций в выражении для оценки стоимости опциона в явном виде не фигурирует. Ее влияние осуществляется через изменение курса акций. Любые изменения в ожиданиях Относительно будущего курса акций или ожидаемой доходности от инвестиций в акции будут приводить к изменению курса акций и, таким образом, к изменению стоимости опциона "колл". Однако при любом заданном курсе акций цену опциона можно определить и не зная ожидаемой доходности акций. Финансовые аналитики, спорящие по поводу ожидаемой доходности акций, вполне могут, исходя из складывающегося курса акций, прийти к единому мнению относительно цены опциона.

Перейти на страницу:

Поиск

Похожие книги