Добравшись по проводу до отсека с камерой, поток электронов разветвляется по двум направлением: одно ведет к компьютеру, а другое – к собственно камере. Говорят, что все дороги ведут в Рим. Применительно к электрическим цепям можно сказать, что они ведут к батарее. Массивный желтый буй был лишь наружной оболочкой для этого ветвящегося потока электронов, а сами они генерировали электрические и магнитные поля, приводя в движение шторки камеры, выполняя роль секундомеров, создавая световые вспышки и фиксируя данные в виде огромной и чрезвычайно сложной синхронизированной последовательности электрических импульсов, прежде чем вернуться к батарее.

И все это происходило во время шторма, разыгравшегося в Северной Атлантике, когда буй раскачивался на огромных волнах (иногда их высота достигала 8–10 метров). Мы маневрировали, отдавшись во власть стихии, рядом с буем на исследовательском судне, где сила земного притяжения была весьма ненадежным товарищем и где видимость порядка поддерживалась лишь стальными тросами, пеньковыми канатами и эластичными шнурами. Через три-четыре дня течение химической реакции в батареях подошло к концу – они снова вернулись в свое первоначальное, незаряженное состояние. Запас электрической энергии на буе закончился, исчерпалась сила, заставлявшая электроны перемещаться по электрическим цепям. Буй превратился в безжизненную оболочку из металла, пластика и полупроводниковых материалов. Но собранные нами данные уже хранились в полупроводниковой памяти компьютера, и это было очень надежное хранилище информации.

Через несколько дней, когда шторм стих, мы подтянули буй к судну и затащили на борт. Я всегда испытывала безмерное восхищение мастерством экипажа нашего исследовательского судна, наблюдая за тем, как умело они вылавливают из воды всевозможные предметы. Корабль нельзя заставить двигаться вбок; он медленно поворачивается и меняет направление. Чтобы получить шанс выловить буй и поднять его на борт, капитану нашего 75-метрового судна нужно было поставить его так, чтобы не повредить буй, но стать рядом с ним настолько близко, чтобы боцман мог зацепить его длинным багром. Как правило, этот маневр удавался капитану с первого раза.

Теперь наступала наша очередь. Батареи подключались к дизель-генератору. Электроэнергия, подаваемая с него, запускала в них обратные химические реакции, которые обеспечивали заряд батарей. Научную аппаратуру, за исключением камеры, извлекали из буя и заносили в помещения. Камеру мы оставляли на холоде, так как у танца электронов есть оборотная сторона и моему бедному аспиранту пришлось бы заплатить соответствующую цену.

Возможно, самый фундаментальный из известных нам физических законов – который из раза в раз подтверждает свою точность и его еще никогда и никому не удавалось опровергнуть – это закон сохранения энергии. Он гласит, что энергию нельзя создать или уничтожить, а можно лишь преобразовывать из одной формы в другую. Батарея заключала в себе химическую энергию, а химические реакции преобразовывали ее в электрическую энергию, после чего она перемещалась где-то между одним терминалом батареи и другим. Но где конкретно? Что-то происходило: камера делала снимки, выполнялись компьютерные программы, на носители информации записывались данные. Но ни одно из этих устройств не сохраняло электрическую энергию в каком-либо новом месте. Она просто незаметно куда-то «вымывалась». За целенаправленное перемещение электронов всегда приходится платить определенную цену, и такой ценой становится тепловыделение. Любое электрическое сопротивление заставляет платить некий «энергетический налог» на электрическую энергию, проходящую через него. Несмотря на то что электроны всегда выбирают путь наименьшего сопротивления, какой-то «налог» приходится платить в любом случае[75].

Камера была заключена в толстый пластмассовый корпус – материал, очень плохо проводящий тепло. Когда она работала, вся энергия электронов, перемещающихся по электрическим цепям, постепенно преобразовывалась в тепло. Пока камера пребывала в воде, это не имело особого значения, так как температура морской воды в то время составляла примерно 8 ℃ и вода интенсивно вбирала в себя тепло, эффективно охлаждая корпус камеры. Но воздух гораздо хуже справлялся с этой задачей. В лаборатории при загрузке данных из камеры в компьютер камера перегревалась. Мы делали все, что было в наших силах, но единственным решением, которое нам удалось найти, было оставлять камеру снаружи, в ведре, наполненном водой вперемешку со льдом (благо у нас на корабле был агрегат для его приготовления). Таким образом, моему аспиранту приходилось тратить по девять-десять часов, запуская и останавливая загрузку данных, чтобы предотвратить перегрев камеры и возможную потерю данных, собранных с таким трудом. Вот так творится наука в полевых условиях!

Перейти на страницу:

Все книги серии МИФ. Научпоп

Похожие книги