В первом случае радионуклиды, например, 210Po, испускают альфа-частицы с определенной энергией. Во втором случае радионуклид обычно испускает группу альфа-частиц с несколько различными, но вполне определенными значениями энергии. Таким образом, спектры излучения альфа-частиц являются дискретными.

Помимо ядер гелия -активные радионуклиды, как правило, излучают еще и -кванты («жесткое» электромагнитное излучение), порождаемое возбужденными дочерними ядрами. Спектр -излучения тоже дискретен.

Примером радионуклида, имеющего сложный дискретный спектр – и -излучения, является один из природных изотопов тория, 228Th (рис.1).

Диапазон энергий альфа-частиц, испускаемых радионуклидами, довольно широк: от 1,83 МэВ у 144Nd до 11,7 МэB у 212Po, но у подавляющего числа -активных радионуклидов эта энергия находится в интервале значений 4–9 МэВ. За небольшими исключениями значения периодов полураспада – активных ядер лежат внутри громадного диапазона: ~10–7с < T1/2< – 1010 лет, но, например, у 144Nd даже T1/2 = 5•1015 лет.

Бета-распад

Данный вид распада представляет собой ядерное превращение радионуклида в нуклид-изобар; при этом значение заряда ядра (Z) изменяется на ±1. При распаде в ядре происходит превращение одного из нейтронов в протон:

1n -> 1p + e+ v + E ,

где n и p соответственно символы нейтрона и протона; e– электрон ядерного происхождения, т.е. частица; v – антинейтрино. При этом образовавшийся протон остается в ядре, которое становится ядром нового (образовавшегося дочернего) радионуклида, а электрон (частица) и антинейтрино покидают ядро, что и составляет бета-излучение.

Этот процесс не следует отождествлять с «распадом» свободного нейтрона, который имеет период полураспада – 12,5 минут. В случае - распада скорость превращения нейтрона в протон внутри ядра для каждого радионуклида является строго индивидуальной характеристикой; не существует двух различных радионуклидов с одинаковыми значениями периода полураспада.

Известен так называемый простой бета-распад, при котором все ядра радионуклида после испускания частицы переходят в одинаковое энергетическое состояние (основное состояние). Примером такого случая может служить распад одного из радионуклидов фосфора: .

Более сложным является случай, когда ядра, образовавшиеся вследствие распада, оказываются в различных возбужденных состояниях, что в соответствии с законами квантовой механики моделируется несколькими дискретными уровнями энергии; среди них может оказаться и основной уровень ядра. В большинстве случаев переход нуклида из возбужденного состояния в основное происходит путем испускания (эмиссии) гамма-квантов, уносящих избыток энергии (подробнее об этом ниже).

Типичный энергетический спектр бета-излучения, соответствующий простому -распаду, в отличие от дискретного спектра альфа-излучения является непрерывным (см. рис.2) и характеризуется некоторым максимальным значением энергии E,max, которое не могут превзойти вылетающие из ядра -частицы. С другой стороны, график непрерывного спектра излучения имеет максимум E, что соответствует той энергии , которой обладает большинство частиц, образующихся при распаде данного радионуклида. Эти понятия не следует отождествлять друг с другом; более того, всегда выполняется соотношение: E,max>E. Казалось бы, все бета-частицы, испускаемые каждым радионуклидом, в соответствии с законом сохранения энергии должны были бы обладать одинаковой энергией, характерной для данного радионуклида и равной разности энергетических состояний материнского и дочернего ядер. Тем не менее непрерывность спектра бета-излучения – надежно установленное эмпирическое обобщение. Законы сохранения здесь удовлетворены тем, что при распаде одновременно с бета-частицей ядро испускает антинейтрино.

<p>1.3.4. Математическая модель радиоактивного распада. Эмпирический закон и его статистическое обоснование</p>

В 1902 г. в журнале Philosophical Magazine вышла статья Эрнеста Резерфорда и Фредерика Содди, озаглавленная «Причина и природа радиоактивности». В этой статье впервые радиоактивный распад был описан математически.

Эти авторы изучали распад так называемого ThX (В то время еще не была сформулирована изотопная концепция и исследователи относились к этой радиоактивной субстанции как к индивидуальному веществу, хотя указывали, что «сейчас еще мало что известно о действительной природе активного компонента тория». Позже было установлено, что это радиоизотоп 224Ra с периодом полураспада 3,64 сут.) и заметили, что «активность ThX уменьшается со временем приблизительно в геометрической прогрессии, т.е. если через Io обозначить начальную активность, а через It – активность спустя время t, то

, (1.1)

Перейти на страницу:

Поиск

Похожие книги