Очевидно, новый товар не вызвал ажиотажа на рынке, а изготовлять правильный двенадцатигранник не так просто, и потому Гамильтон предложил другой вариант игры — технологически намного упрощенный. Роль додекаэдра, пространственного тела, играло его плоское изображение — так называемый граф, то есть фигура, составленная из вершин, соединенных ребрами. (Все многоугольники, все мозаики, что мы рассматривали и еще только будем рассматривать, — это, несмотря на свой простецкий вид, типичные графы.)
Граф, заменяющий собой многогранник, повторяет его архитектуру — столько же вершин, столько же ребер и граней, тот же способ соединения их друг с другом. (Потому формула Эйлера, справедливая для многогранников, верна также и для графов.) Вот один из способов получить такой граф: надо спроецировать весь многогранник на плоскость одной из его граней, а центр проекции выбрать недалеко от ее середины. Тогда для пяти Платоновых тел получаются графы (см. 73-ю страницу книги). Они называются диаграммой Шлегеля. Таким нам увиделся бы гигантский многогранник, если бы мы удалили одну его грань, забрались в образовавшуюся дыру и стали рассматривать его изнутри. Диаграммы эти очень удобны — они позволяют на листе бумаги производить манипуляции с объемным телом, чем и воспользовался Гамильтон, чтобы упростить свою нерентабельную головоломку.
Математика сохранила память о его поучительной игрушке — до сих пор линия, проходящая по одному разу через все вершины графа, называется гамильтоновой. Но и сейчас никто не может сказать, существует ли для того или иного графа гамильтонова линия или нет. А это весьма обидно, ибо жизнь часто требует ответа на подобный вопрос. Например, знаменитая "задача о странствующем торговце" состоит в том, что он должен посетить несколько городов и как можно скорее вернуться домой. В общем виде эта транспортная проблема не решена. Можно, конечно, перебрать все варианты и выбрать наилучший порядок обхода городов, но если их много, за дело без мощных вычислительных машин лучше не браться. Впрочем, кое-какие задачи подобного типа все-таки решены — например, найдена кратчайшая авиалиния, проходящая по всем главным городам Америки.
"Со времен древнегреческих философов правильные многогранники считались не более, чем игрушкой для математиков, не имеющей никакого практического значения. весьма замечательно, что как раз эти фигуры оказались в центре внимания биологов в их яростных спорах относительно точной формы вирусов", — замечает в своей превосходной книге "Нить жизни" крупнейший специалист в области структуры белка Джон Кендрью — тот самый, который сумел определить пространственную конфигурацию молекулы миоглобина, за что и получил Нобелевскую премию. В этой книге помещена чрезвычайно любопытная фотография вируса, поражающего комара-долгоножку, так называемого иридесцентного вируса
Послушайте Джона Кендрью:
"Вы можете спросить: а почему обязательно правильный многогранник? И почему именно икосаэдр? По-видимому, тут все дело в экономии — экономии генетической информации. Вирусная частица должна весь обмен клетки-хозяина перевернуть вверх дном; она должна заставить зараженную клетку синтезировать многочисленные ферменты и другие молекулы, необходимые для синтеза новых вирусных частиц. Все эти ферменты должны быть закодированы в вирусной нуклеиновой кислоте. Но количество ее ограничено. Поэтому для кодирования белков собственной оболочки в нуклеиновой кислоте вируса оставлено совсем мало места. Что же делает вирус? Он просто использует много раз один и тот же участок нуклеиновой кислоты для синтеза большого числа стандартных молекул — строительных белков, объединяющихся в процессе автосборки вирусной частицы. В результате достигается максимальная экономия генетической информации. Остается добавить, что по законам математики для построения наиболее экономичным способом замкнутой оболочки из одинаковых элементов нужно сложить из них икосаэдр, который мы наблюдаем у вирусов".