Примерами этих сил можно назвать силы тяжести, инерции (кориолисова и переносная силы инерции), электромагнитные силы.

Однако в гидравлике, кроме особых случаев, электромагнитные силы не рассматривают.

2. Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность Δw, которая может находиться как на поверхности, так и внутри жидкости; на поверхности, произвольно проведенной внутри жидкости.

Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.

Если по аналогии (1) определить плотность этих сил, то:

нормальное напряжение в точке А:

касательное напряжение в точке А:

И массовые, и поверхностные силы могут быть внешними, которые действуют извне и приложены к какой-то частице или каждому элементу жидкости; внутренними, которые являются парными и их сумма равна нулю.

<p>4. Гидростатическое давление и его свойства</p>

Общие дифференциальные уравнения равновесия жидкости – уравнения Л. Эйлера для гидростатики.

Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость S = w.

Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение Δw, и есть гидростатическое давление.

Если оценить среднее значение этой силы,

Рассмотрев точку А как предельный случай w, определяем:

Если перейти к пределу, то Δw переходит в точку А.

Поэтому Δpx→ Δpn. В конечном результате px = pn, точно так же можно получить py = pn, pz = pn.

Следовательно,

py = pn, pz = pn.

Мы доказали, что во всех трех направлениях (их мы выбрали произвольно) скалярное значение сил одно и то же, то есть не зависит от ориентации сечения Δw.

Вот это скалярное значение приложенных сил и есть гидростатическое давление, о котором говорили выше: именно это значение, сумма всех составляющих, передается через Δw.

Другое дело, что в сумме (px + py + pz) какая-то составляющая окажется равной нулю.

Как мы в дальнейшем убедимся, в определенных условиях гидростатическое давление все же может быть неодинаково в различных точках одной и той же покоящейся жидкости, т. е.

p = f(x, y, z).

Свойства гидростатического давления.

1. Гидростатическое давление всегда направлено по нормали к поверхности и его величина не зависит от ориентации поверхности.

2. Внутри покоящейся жидкости в любой точке гидростатическое давление направлено по внутренней нормали к площадке, проходящей через эту точку.

Причем px = py = pz = pn.

3. Для любых двух точек одного и того же объема однородной несжимаемой жидкости (ρ = const)

ρ1 + ρП1 = ρ2 + ρП1

где ρ – плотность жидкости;

П1, П2 – значение поле массовых сил в этих точках.

Поверхность, для любых двух точек которой давление одно и то же, называется поверхностью равного давления.

<p>5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести</p>

Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.

Для единицы массы покоящейся жидкости

Для любых двух точек одного и того же объема, то

Полученные уравнения описывают распределение давления в жидкости, которая находится в равновесном состоянии. Из них уравнение (2) является основным уравнением гидростатики.

Для водоемов больших объемов или поверхности требуется уточнения: сонаправлен ли радиусу Земли в данной точке; насколько горизонтальна рассматриваемая поверхность.

Из (2) следует

p = p0 + ρg(z – z0), (4)

где z1 = z; p1 = p; z2 = z0; p2 = p0.

p = p0 + ρgh, (5)

где ρgh – весовое давление, которое соответствует единичной высоте и единичной площади.

Давление р называют абсолютным давлением pабс.

Если р > pабс, то p – pатм = p0 + ρgh – pатм – его называют избыточным давлением:

pизч = p < p0, (6)

если p < pатм, то говорят о разности в жидкости

pвак = pатм – p, (7)

называют вакуумметрическим давлением.

<p>6. Законы Паскаля. Приборы измерения давления</p>

Что произойдет в других точках жидкости, если приложим некоторое усилие Δp? Если выбрать две точки, и приложить к одной из них усилие Δp1, то по основному уравнению гидростатики, во второй точке давление изменится на Δp2.

откуда легко заключить, что при равности прочих слагаемых должно быть

Δp1= Δp2. (2)

Мы получили выражение закона Паскаля, который гласит: изменение давления в любой точке жидкости в равновесном состоянии передается во все остальные точки без изменений.

Перейти на страницу:

Поиск

Все книги серии Шпаргалки

Похожие книги