В отличие от глаза, который должен видеть, лист растения должен усваивать световую энергию для химических превращений. Это находит свое выражение в спектральном расположении кривой фотохимической чувствительности зеленого растения. На рисунке 36 площадью III отмечена основная кривая поглощения зеленого красящего вещества растений – хлорофилла. Ее максимум резко сдвинут по отношению к кривой дневной видности в сторону длинных волн. Насколько это биологически целесообразно, почему в данном случае выгоднее длинные волны?

Вернемся к основному фотохимическому закону, о котором мы говорили в главе о свете. Мы видели, что для осуществления химического превращения в молекуле необходимо поглотить один квант h. Этот квант, конечно, должен по своей энергии превышать некоторую минимальную величину h0, требующуюся для химического разложения, иначе реакция не пойдет. Поэтому ясно, что под действием инфракрасных лучей химические процессы мало вероятны.

С другой стороны, разложение может быть осуществлено всеми поглощающимися квантами h, энергия которых больше h0. Однако, сколь бы велика ни была энергия кванта, он будет поглощен только одной молекулой и произведет то же, что и квант с относительно малой энергией, но превышающей энергию h0. Отсюда ясно, что фотохимически для растения наиболее выгодны кванты с наименьшей энергией (но большей h0), т. е. с наибольшей допустимой длиной волны.

Если теперь принять во внимание кривую среднего распределения солнечного света, изображенную на рисунке 36 (верхняя кривая), то очевидно, что в равномерном участке между 450 и 650 mµ наиболее выгодно расположить кривую хлорофилла в области 600–700 mµ, где она действительно и находится.

Когда фотографу нужно переместить максимум спектральной чувствительности пластинки из одной области в другую, он прокрашивает светочувствительный слой разными органическими красителями – «сенсибилизаторами», получая таким образом фотографические слои, особо чувствительные, смотря по надобности, к красным, желтым, зеленым лучам. Совершенно то же, как мы убедились, происходит и в природе, причем сенсибилизаторами служат зрительный пурпур и хлорофилл.

Форма кривой видности имеет огромное значение для осветительной техники. В большинстве искусственных источников света используется излучение при нагревании (свечи, керосиновые лампы, лампочки накаливания и т. д.); в этом излучении только часть лучей видима, остальные бесследно пропадают для глаза. Если повышать температуру тела с черной поверхностью, то все большие порции лучистой энергии переходят из инфракрасной области в видимую, источник света становится выгоднее. Однако так будет продолжаться не всегда. При повышении температуры одновременно часть лучистой энергии перекачивает в невидимую ультрафиолетовую область. Теоретически возможно достигнуть таких температур, когда огромная часть лучистой энергии перейдет в невидимую область ультрафиолетовых и рентгеновых лучей. Значит, существует некоторая наивыгоднейшая для глаза температура накала источника света. Какова она?

Таблица 3

В таблице 3 указан процент лучистой энергии, проявляющейся как видимый свет для разных температур.

Мы видим, что наивыгоднейшей температурой будет 6000°, когда половина всей энергии превращается в видимый свет. Но это температура Солнца! Какая же связь имеется между излучением Солнца, черным телом и глазом? Не случайность ли найденное совпадение? После того что мы узнали о свете, Солнце и глазе, после того как для нас становится несомненным, что глаз развился вследствие существования Солнца, в известном смысле для Солнца и под действием Солнца, найденная связь становится вполне естественной и необходимой. И Солнце, и светящееся черное тело наблюдаются одним и тем же глазом. Но глаз приспособился к Солнцу, поэтому для него подобие спектра искусственного источника спектру Солнца есть наиболее совершенное решение задачи.

Перейти на страницу:

Поиск

Похожие книги