Для облегчения подобных расчетов физики используют в качестве единицы силы ньютон. 1 ньютон – это сила, ускоряющая тело массой 1 килограмм на 1 метр в секунду за секунду. Почему мы говорим «в секунду за секунду»? Потому что при ускорении скорость все время меняется; то есть, иными словами, после первой секунды ее рост не прекращается. Если ускорение постоянно, скорость каждую секунду изменяется на одну ту же величину.

Чтобы стало еще понятнее, приведу пример с шаром для боулинга, падающего с высотки на Манхэттене, скажем со смотровой площадки Эмпайр-стейт-билдинг. Известно, что ускорение падающих объектов на Земле составляет примерно 9,8 метра в секунду за секунду; его называют ускорением свободного падения и обозначают в физике буквой g. (Ради простоты изложения я в данном случае игнорирую сопротивление воздуха; позже мы поговорим об этом подробнее.) Через одну секунду шар для боулинга летит со скоростью 9,8 метра в секунду. К концу второй секунды он ускоряется еще на 9,8 метра в секунду, следовательно, движется со скоростью 19,6 метра в секунду. А к концу третьей секунды он уже будет лететь со скоростью 29,4 метра в секунду. Чтобы долететь со смотровой площадки до земли, ему требуется около 8 секунд. Таким образом, его скорость к этому моменту составляет 8 раз по 9,8, то есть около 78 метров в секунду (приблизительно 280 километров в час).

Кстати, вы знаете о весьма распространенном мифе, что если бросить с верхушки Эмпайр-стейт-билдинг монетку и попасть в человека, то его можно убить? Тут я опять игнорирую роль сопротивления воздуха, которая – я подчеркиваю – в данном случае будет весьма значительной. Но даже без ее учета монетка, упавшая вам на голову со скоростью около 78 метров в секунду, вряд ли вас убьет.

Сейчас довольно удачный момент, чтобы разобраться с одной проблемой, которая будет неоднократно встречаться в этой книге, поскольку она часто возникает в физике – разницей между массой и весом. Обратите внимание, что Ньютон использует в своем уравнении массу, а не вес тела, и хотя вы, скорее всего, думаете, что это одно и то же, в действительности это принципиально разные понятия. Мы обычно используем как единицу веса килограмм (и в этой книге тоже), но на самом деле это единицы массы.

Разница между ними довольно проста. Ваша масса остается одинаковой независимо от того, в каком месте Вселенной вы находитесь. Правда-правда – и на Луне, и в открытом космосе, и на поверхности какого-нибудь астероида. При смене места изменяется не масса, а вес. Так что же такое вес? Вот тут все несколько усложняется. Вес – это результат гравитационного притяжения. Вес является силой: это масса, умноженная на гравитационное ускорение (F = mg). Таким образом, наш вес варьируется в зависимости от воздействующей на нас силы тяготения, поэтому космонавты на Луне весят меньше. Гравитация на Луне в шесть раз меньше, чем на Земле, так что на Луне человек весит лишь одну шестую часть от своего веса на Земле.

На тело определенной массы действует приблизительно одинаковая сила земного притяжения, не зависящая от того, где именно на Земле оно находится. Следовательно, вполне правомерно говорить: «Он весит восемьдесят килограммов», несмотря на то что при этом мы путаем две категории – массу и вес. Я долго и упорно думал, стоит ли использовать в этой книге специальную физическую единицу силы (то есть вес), а не килограммы, и решил этого не делать, потому что тогда обсуждение получится слишком запутанным. Вряд ли даже самый фанатичный физик, весящий 80 килограммов, сказал бы: «Я вешу 784 ньютона» (80 × 9,8 = 784). Так что вместо этого я просто прошу запомнить, в чем разница между массой и весом, поскольку вскоре мы вернемся к данному вопросу, выясняя, почему весы сходят с ума, когда вы, стоя на них, поднимаетесь на цыпочки.

Тот факт, что ускорение свободного падения на Земле фактически везде одинаково, базируется на еще одном таинственном обстоятельстве, о котором вы, возможно, наслышаны: что тела с разной массой падают с одинаковой скоростью. В известной истории о Галилео Галилее, впервые рассказанной в его ранней биографии, описывается, как он проводил эксперимент, одновременно бросая с верхушки Пизанской башни пушечное ядро и деревянный шар меньшего размера. Предположительно, он делал это, чтобы опровергнуть приписываемое Аристотелю утверждение, будто более тяжелые предметы падают быстрее, чем легкие. Этот рассказ у многих вызывал сомнение, и сегодня, кажется, уже для всех очевидно, что Галилей никогда не проводил такого эксперимента, тем не менее история по-прежнему популярна. Причем настолько, что командир «Аполлона 15» астронавт НАСА Дэвид Скотт, как известно, одновременно бросил на поверхность Луны молоток и перо сокола, чтобы посмотреть, будут ли они падать вниз с одинаковой скоростью и в вакууме. Это замечательное видео можно найти в интернете.

Перейти на страницу:

Похожие книги