Давайте зададимся достаточно простым вопросом о простых числах. Какие простые числа являются суммой двух квадратов (как, например, 41), а какие нет (как, например, 43)? Иными словами, давайте вернемся к Классам
Некоторым читателям, возможно, кажется, что эти вопросы специфичны, более того, что браться за них неестественно, но математики по сути своей очень любопытные люди, и частенько их ужасно привлекает мысль о том, чтобы исследовать связи между понятиями, которые априори не кажутся взаимосвязанными вовсе (как, например, простые числа и квадраты). Часто случается, что находится неожиданная и тесная связь – некая безумная скрытая закономерность, с виду просто магическая, из-за открытия или разоблачения которой вдоль позвоночника иногда пробегает мистическая нервная
Чтобы притереться к такого рода вещам, давайте возьмем список всех простых чисел до 100 – 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 – между прочим, довольно беспорядочный и хаотичный список, – и перепишем его, выделяя те простые числа, которые
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…
Видите ли вы здесь что-нибудь интересное? Ну, по крайней мере, уже не выглядит неожиданным тот факт, что соревнование довольно равное? Почему так? Почему либо Класс
Охота на паттерны
Итак, читатель, мы с вами снова встретились – надеюсь, после некоторых паттерновых поисков с вашей стороны. Скорее всего, вы заметили, что непреднамеренно и случайно (случайно ли?) после выделения наш список распался на
Посмотрим на это еще немного. Жирным шрифтом выделены парочки 13–17, 37–41 и 89–97, тогда как не выделены 7-11, 19–23, 43–47, 67–71 и 79–83. Теперь предлагаю заменить все
О, О, О, П, П, П, О, О, П, П, О, О, О, П, О, П, П…
Есть ли здесь некая закономерность или ее нет? Как вы думаете? Если мы оставим только буквы Класса
Люди, которые упорно преследуют паттерны
В этот момент я чувствую необходимость указать на различие между двумя классами людей, а не чисел. Есть те, кого мысль о поиске паттернов привлекает мгновенно, и те, кто сочтет его неинтересным, возможно, даже противным. Первые – это, по сути, те, у кого есть математические наклонности, а вторые – у кого их нет. Математики – это люди, которых в глубине души манит – а если честно, то с легкостью соблазняет, – необходимость найти паттерны там, где изначально кажется, что их нет. Именно страстные поиски порядка в кажущемся беспорядке подпитывают их пламя и разжигают в их душах огонь. Я надеюсь, что вы относитесь к этому классу людей, дорогой читатель, но даже если нет, прошу, потерпите еще немного.