Например, в следующем фрагменте кода можно избавится от символов, которые не являются буквами:

>>> filter(lambda x: x.isalpha(), 'Hi, there! I am eating an apple.')

'HithereIameatinganapple'

<p>Списковые включения</p>

Для более естественной записи обработки списков в Python 2 была внесена новинка: списковые включения. Фактически это специальный сокращенный синтаксис для вложенных циклов for и условий if, на самом низком уровне которых определенное выражение добавляется к списку, например:

all_pairs = []

for i in range(5):

 for j in range(5):

  if i <= j:

   all_pairs.append((i, j))

Все это можно записать в виде спискового включения так:

all_pairs = [(i, j) for i in range(5) for j in range(5) if i <= j]

Как легко заметить, списковые включения позволяют заменить map() и filter() на более удобные для прочтения конструкции.

В следующей таблице приведены эквивалентные выражения в разных формах:

В форме функцииВ форме спискового включения
filter(f, lst)[x for x in lst if f(x)]
filter(None, lst)[x for x in lst if x]
map(f, lst)[f(x) for x in lst]
<p>Функция sum()</p>

Получить сумму элементов можно с помощью функции sum():

>>> sum(range(10))

45

Эта функция работает только для числовых типов, она не может конкатенировать строки. Для конкатенации списка строк следует использовать метод join().

<p>Функция reduce()</p>

Для организации цепочечных вычислений (вычислений с накоплением результата) можно применять функцию reduce(), которая принимает три аргумента: функцию двух аргументов, последовательность и начальное значение. С помощью этой функции можно, в частности, реализовать функцию sum():

def sum(lst, start):

 return reduce(lambda x, y: x + y, lst, start)

Совет:

Следует помнить, что в качестве передаваемого объекта может оказаться список, который позволит накапливать промежуточные результаты. Тем самым, reduce() может использоваться для генерации последовательностей. 

В следующем примере накапливаются промежуточные результаты суммирования:

lst = range(10)

f = lambda x, y: (x[0] + y, x[1]+[x[0] + y])

print reduce(f, lst, (0, []))

В итоге получается:

(45, [0, 1, 3, 6, 10, 15, 21, 28, 36, 45])

<p>Функция zip()</p>

Эта функция возвращает список кортежей, в котором i–й кортеж содержит i–е элементы аргументов–последовательностей. Длина результирующей последовательности равна длине самой короткой из последовательностей–аргументов:

>>> print zip(range(5), "abcde")

[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')]

<p>Итераторы</p>

Применять для обработки данных явные последовательности не всегда эффективно, так как на хранение временных данных может тратиться много оперативной памяти. Более эффективным решением представляется использование итераторов — специальных объектов, обеспечивающих последовательный доступ к данным контейнера. Если в выражении есть операции с итераторами вместо контейнеров, промежуточные данные не будут требовать много места для хранения — ведь они запрашиваются по мере необходимости для вычислений. При обработке данных с использованием итераторов память будет требоваться только для исходных данных и результата, да и то необязательно вся сразу — ведь данные могут читаться и записываться в файл на диске.

Итераторы можно применять вместо последовательности в операторе for. Более того, внутренне оператор for запрашивает от последовательности ее итератор. Объект файлового типа тоже (построчный) итератор, что позволяет обрабатывать большие файлы, не считывая их целиком в память.

Там, где требуется итератор, можно использовать последовательность.

Работа с итераторами рассматривается в разделе, посвященном функциональному программированию, так как итераторами удобно манипулировать именно в функциональном стиле.

Перейти на страницу:

Похожие книги