Задачи, решаемые в учебном пособии «Имитационное моделирование»:

• сформировать целостное представление о системе экономико-математических моделей и месте имитационных моделей, а также изучить процессы массового обслуживания;

• научить выполнять имитацию инновационного объекта в трех измерениях: материальном, денежном и информационном;

• произвести экономическое прогнозирование и предвидение развития экономических процессов;

• сформировать у студентов навыки, необходимые для выработки управленческих решений.

Компьютерное моделирование становится сегодня обязательным этапом в принятии ответственных решений во всех областях деятельности человека в связи с усложнением систем, в которых человек должен действовать и которыми он должен управлять. Знание принципов и возможностей имитационного моделирования, умение создавать и применять модели являются необходимыми требованиями к инженеру, менеджеру, бизнес-аналитику [4].

<p>Глава 1</p><p>Методологические основы имитационного моделирования</p><p>1.1. Моделирование как научный метод</p>

Моделирование является одним из способов решения практических задач. Зачастую решение проблемы нельзя найти путем проведения натурных экспериментов: строить новые объекты, разрушать или вносить изменения в уже имеющуюся инфраструктуру может быть слишком дорого, опасно или просто невозможно. В таких случаях целесообразно построить модель реальной системы, т. е. описать ее на языке моделирования. Данный процесс подразумевает переход на определенный уровень абстракции, опуская несущественные детали, с учетом только того, что считаем важным. Система в реальном мире всегда сложнее своей модели (рис. 1.1) [6].

screen_image_7_322_93

Рис. 1.1. Моделирование реальных систем

Все этапы разработки модели – проекция реального мира в мир моделей, выбор уровня абстракции и выбор языка моделирования менее стандартизированы, чем процесс использования моделей для решения задач. Моделирование до сих пор больше искусство, чем наука.

После создания модели – а иногда и в процессе разработки – мы начинаем исследовать структуру и понимать поведение системы, проверять, как она ведет себя при определенных условиях, сравнивать различные сценарии и оптимизировать ее. Когда оптимальное решение будет найдено, мы сможем применить его в реальном мире.

В сущности, моделирование является поиском решения задачи в защищенном от риска мире моделей, в котором мы можем ошибаться, отменять операции, возвращаться в прошлое и начинать все сначала [6].

Моделирование дает предположительную информацию о неком фрагменте реальности. После определенных проверок она может оказаться истинной или ложной и потребовать построения новых моделей [1].

В науке, наряду с наблюдением, измерением, экспериментом и сравнением, эта процедура выступает как один из общенаучных методов. Однако моделирование можно рассматривать как особый интегрирующий метод. Его эффективность и универсализм возрастают по мере развития информационных технологий. В силу разных причин объект может быть недоступен (слишком мал или велик, далеко расположен, дорог, прекратил существование, например в результате аварии). Исключительная польза моделирования заключается в том, что можно экспериментировать не с самой системой, а с ее аналогом – моделью.

Моделирование – процесс отражения свойств одного объекта (оригинала) в другом объекте (модели). Это могут быть объекты «как есть» в целом и (или) их отдельные сущности – процессы и явления. Явления – например, поведение животного, состояния погоды – рассматриваются как сложные процессы.

В основу моделирования заложена процедура формализации – перевод свойств объекта на язык понятий предметной области, алгоритмов и математики.

Подобие модели объекту. Объект и модель находятся в отношении сходства, т. е. модель по каким-то признакам должна быть подобна изучаемому объекту. Это явление называют изоморфизмом (от греч. isos – равный и morphe – форма). Различают три вида подобия.

Первый вид подобия – подобное масштабирование. Примеры такого подобия: модели автомобилей, самолетов, кораблей, сооружений и т. д.

Второй вид подобия – косвенное подобие (математическая аналогия). Удачный математический аналог из других областей знаний может сильно упростить построение модели и ее анализ. Так, очень многие физические процессы могут быть описаны уравнениями, общий вид которых q = – grad x (рис. 1.2).

Рис. 1.2. Тройная аналогия процессов переноса

Аналогичны законы Кулона и всемирного тяготения. Примером также может служить подобие электрических и механических явлений:

• колебание физического маятника:

screen_image_9_428_179

• пружинного маятника:

screen_image_9_468_175

• колебательного контура:

screen_image_9_506_178screen_image_10_61_59

Рис. 1.3. Когнитивная модель потребления промышленной продукции (энергии, металлов и т. п.): «+» – положительные связи (влияния); «–» – отрицательные связи (влияния)

Перейти на страницу:

Похожие книги