И что означало это «чуть-чуть»? Как оказалось, это «чуть-чуть» предвещало революцию. Ту самую, которую совершил Эйнштейн 25 лет спустя. Искривление времени и пространства наделяет Солнце силой гравитации, которая подчиняется закону обратных квадратов, но лишь приблизительно, не абсолютно точно.

Осознав, что его новые релятивистские законы объясняют наблюдаемую аномалию, Эйнштейн пришел в восторг. Он почувствовал, будто что-то у него внутри щелкнуло, и его сердце заколотилось как бешеное: «Несколько дней я был вне себя от радостного возбуждения».

На сегодняшний день измеренная аномалия прецессии и прогнозы законов Эйнштейна совпадают с точностью до одной тысячной (одной тысячной от аномальной прецессии), что соответствует точности измерений – грандиозное достижение Эйнштейна!

<p>Аномальные орбиты галактик</p>

В 1933 году астрофизик Фриц Цвикки из Калтеха заявил, что обнаружил крупную аномалию орбитального движения галактик относительно друг друга. Галактики находились в скоплении Кома (рис. 24.2), состоящем примерно из тысячи галактик и расположенном в 300 миллионах световых лет от Земли, в созвездии Волосы Вероники.

Рис. 24.2. Галактическое скопление Кома, увиденное через сильный телескоп

Пользуясь данными о доплеровском сдвиге в спектральных линиях галактик, Цвикки мог оценить, насколько быстро они движутся друг относительно друга, а измерив яркость каждой галактики – оценить ее массу и, следовательно, гравитационное притяжение. Галактики двигались так быстро, что их гравитационное притяжение не смогло бы удержать скопление от распада. Из всех наших знаний о Вселенной и гравитации явно следует, что этим галактикам положено разлететься в разные стороны и вскоре скопление должно полностью исчезнуть. В таком случае выходит, что скопление образовалось из-за случайных перемещений галактик и должно разрушиться в мгновение ока (по сравнению с другими астрономическими явлениями).

Но этот вывод казался Цвикки совершенно невероятным. Что-то было не так с нашими привычными взглядами. Цвикки сделал обоснованное предположение: скопление Кома должно быть заполнено некой «темной материей», гравитация которой достаточно сильна, чтобы удерживать скопление от распада.

Надо заметить, что, по мере того как росла точность измерений, астрономы и физики находили все больше и больше аномалий, но каждой из них в конце концов находилось объяснение, лишающее ее статуса аномалии. Только не в этом случае. Более того, к 1970-м годам стало ясно, что так называемая темная материя пронизывает практически все скопления галактик и даже отдельные галактики. К началу этого века выяснилось, что темная материя гравитационно линзирует свет, исходящий от более далеких галактик (рис. 24.3), – так же, как Гаргантюа линзирует свет, исходящий от звезд (см. главу 8). Сегодня этот эффект линзирования используется для картографирования темной материи в нашей Вселенной.

.

Рис. 24.3. Темная материя в скоплении галактик Abell 2218 гравитационно линзирует свет от более далеких галактик. Изображения линзированных галактик дугообразны (обведены фиолетовыми овалами), подобно изображениям, которые видны при гравитационном линзировании Гаргантюа (см. главу 8)

Сейчас физики вполне уверены, что открытие темной материи – свершившаяся революция и что эта материя состоит из фундаментальных частиц незнакомого нам типа, причем типа, предсказанного наиболее перспективными на сегодняшний день концепциями в квантовой физике. Отныне ученые ищут святой Грааль – пытаются обнаружить частицы темной материи, безнаказанно пролетающие мимо нас, и измерить их свойства.

<p>Аномальное ускорение расширения Вселенной</p>

В 1998 году две исследовательские группы, независимо друг от друга, обнаружили поразительную аномалию расширения нашей Вселенной[75]. В 2011 году руководители групп (Сол Перлмуттер и Адам Рисс из Калифорнийского университета в Беркли и Брайан Шмидт из Австралийского национального университета) получили за это открытие Нобелевскую премию по физике.

Обе группы наблюдали за взрывами сверхновых. Подобный взрыв происходит, когда у массивной звезды заканчивается ядерное топливо, она коллапсирует, превращаясь в нейтронную звезду, и энергия коллапса разрывает на части ее внешние слои. Ученые обнаружили, что далекие сверхновые более тусклые, чем ожидалось, а значит, находятся дальше, чем ожидалось. Настолько дальше, что стало ясно: в прошлом Вселенная расширялась медленнее, чем в наши дни. Расширение Вселенной ускоряется (рис. 24.4).

Рис. 24.4. Расстояние до звезды в момент взрыва (когда был испущен видимый нами свет) в двух вариантах: расширение Вселенной замедляется (красная кривая) или ускоряется (синяя). Наблюдаемый взрыв оказался тусклее, чем ожидалось, а значит дальше. Следовательно, Вселенная должна ускоряться

Перейти на страницу:

Похожие книги