Тесная связь современной логики с
Согласно Г. Фреге, Б. Расселу и их последователям математика и логика — это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу. Этот подход к обоснованию математики получил название логицизма. Наиболее законченное изложение он нашел в изданном в 1910–1913 годах трехтомном труде «Principia Mathematica», написанном Б. Расселом совместно с другим английским математиком и логиком — А. Уайтхедом.
Сторонники логицизма добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.
Однако в целом логицизм оказался утопической концепцией. «Математика не выводима из формальной логики, — подводит итог русский математик и логик Д. Бочвар, — ибо для построения математики необходимы аксиомы, устанавливающие факты из области объектов, и, прежде всего, — существование в последней определенных объектов. Но такие аксиомы обладают уже внелогической природой».
Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас еще считают главной — если не единственной — задачей математической логики уточнение понятия математического доказательства и исключение парадоксальных, противоречащих интуиции утверждений из математических теорий. Математическая логика, говорит, например, английский логик Р. Гудстейн, имеет своей целью выявление и систематизацию логических процессов, употребляемых в математическом рассуждении, а также разъяснение математических понятий. Сама она является ветвью математики, использующей математическую символику и технику, ветвью, развивающейся в целом в течение последних ста лет, и притом такой, которая по своей плодотворности, по силе и важности своих открытий вполне может претендовать на место в авангарде современной математики.
Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и ее интересует связь между посылками и следствиями в любых областях рассуждения и познания, а не только в одной лишь математике. Математическая логика, истолкованная исключительно как один из разделов математики, не только лишается способности прояснять и уточнять основания математики, но и сама становится непостижимой.
С первых дней своего возникновения современная логика способствовала решению логических проблем и преодолению трудностей, встававших перед математикой. Каждый новый шаг в прогрессе логики быстро сказывался на развитии математической науки. С другой стороны, без использования математических методов и понятий не было бы и современной логики. Но это не означает, разумеется, что одна из этих наук должна быть поглощена другой. Тенденция ставить логику на службу, прежде всего, математике является, однако, по-своему показательной. Она выразительно подчеркивает тесную взаимосвязь логики и математики, их плодотворное и взаимно обогащающее воздействие друг на друга.
Современная логика тесно связана также с