Красота нам нужна, чтобы нас любили мужчины, а глупость нужна нам, чтобы мы любили мужчин.

Коко Шанель

Сколько я бы всего узнал, если бы не ходил в школу!

Д. Б. Шоу

Трудно считать дураком того, кто восхищается нами.

М. Эбнер-Эшенбах

Не дружи с теми, кто тебе равен, и не бойся исправлять свои ошибки.

Конфуций
<p>1. Понятие доказательства</p>

Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее даже в серьезных рассуждениях доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение нужно доказывать, и т. п.

Одна из основных задач логики состоит в придании точного значения понятию доказательства. Но хотя это понятие является одним из основных в логике, оно не имеет точного, универсального определения, применимого во всех случаях и в любых научных теориях. Доказательство — это всего лишь рассуждение, убеждающее нас настолько, что мы готовы с его помощью убеждать других. Логическая теория доказательства в основе своей проста и доступна, но ее детализация требует специального символического языка и другой изощренной техники современной логики.

Под доказательством в логике обычно понимается процедура установления обоснованности некоторого утверждения путем приведения других утверждений, обоснованность которых уже известна и из которых с необходимостью вытекает первое.

Во всяком доказательстве имеются: тезис — утверждение, которое нужно доказать, основание (аргументы) — те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются выведение утверждений в ходе доказательства.

К примеру, нужно доказать тезис «Все люди смертны». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все многоклеточные организмы смертны» и «Все люди являются многоклеточными организмами». Строим умозаключение:

Все многоклеточные организмы смертны.

Все люди являются многоклеточными организмами.

Следовательно, все люди являются смертными.

Данное умозаключение является правильным, посылки его истинны; значит, умозаключение представляет собой доказательство исходного тезиса.

Доказательство — это правильное умозаключение с обоснованными посылками. Логическую основу каждого доказательства (его, так сказать, схему) составляет логический закон (или система таких законов).

Отношение разных людей к одному и тому же доказательству может быть очень разным. Может случиться, что кто-то принимает определенное доказательство как нечто самоочевидное, в то время как другой убежден, что никакого доказательства на самом деле нет.

Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как в то время было принято, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что эти теоремы справедливы, и не изучал их доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное. Позднее Ньютон изменил свое мнение о необходимости доказательств в математике и других науках и очень хвалил Евклида как раз за безупречность и строгость его доказательств. Живший чуть раньше английский философ Т. Гоббс, прославившийся идеей, что социальная жизнь — это война всех против всех, до сорока лет ничего не знал о геометрии. Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул: «Боже, но это невозможно!» И только позднее, проследив шаг за шагом весь ход доказательства, он убедился в его правильности и с неохотой, но смирился. Большинство из нас, конечно, думает, что ничего другого ему, собственно, и не оставалось. Большинство, но не все.

Мы уверены, например, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить «своими словами». В таком случае мы должны признать также, что язык обезличенный, лишенный индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.

Перейти на страницу:

Похожие книги