Метод формализации доказательства состоит в построении исчисления, в котором содержательным рассуждениям соответствуют чисто формальные преобразования. Они осуществляются на основании системы чисто формальных (принимающих во внимание лишь внешний вид знаков) правил, а не смыслового содержания входящих в рассуждение утверждений. Полная формализация теории имеет место тогда, когда совершенно отвлекаются от содержательного смысла исходных понятий и положений теории и перечисляют все правила логического вывода, используемые в доказательствах. Такая формализация включает в себя три момента: обозначение исходных, неопределяемых терминов; перечисление принимаемых без доказательства формул (аксиом); введение правил преобразования этих формул для получения из них новых формул (теорем). В формализованной теории доказательство не требует обращения к каким-либо интуитивным представлениям. Оно является последовательностью формул, каждая из которых либо есть аксиома, либо получается из аксиом по правилам вывода. Проверка такого доказательства превращается в механическую процедуру и может быть передана вычислительной машине.
Одно время на формализованные доказательства возлагались большие надежды. Предполагалось, что удастся формализовать математические доказательства и затем доказать непротиворечивость математики. Эта программа называлась «формализмом» и противопоставлялась как попыткам свести математику к логике (логицизм), так и намерению опереть математику на особую наглядно-содержательную интуицию (интуиционизм). Предложенная формализмом программа обоснования математики оказалась, однако, утопией. Достаточно богатая содержательная теория (охватывающая хотя бы арифметику натуральных чисел) не может быть полностью отображена в ее формализованной версии: как бы ни пополнялась последняя дополнительными утверждениями (новыми аксиомами), в теории всегда останется не выявленный, неформализованный остаток. Но об этом речь пойдет далее.
7. Как мыслит машина
Одно время, когда стали появляться все более совершенные вычислительные машины, производящие миллионы операций в секунду, очень популярным сделался вопрос: может ли машина мыслить? Не окажется ли в недалеком будущем так, что существенно усовершенствованная вычислительная машина начнет мыслить, как человек, а потом и превзойдет его в сфере мышления? В сфере, считающейся отличительной особенностью человека. Ведь человек, согласно его определению, восходящему еще к античности, — всего лишь разумное животное.
Проблема «машинного мышления» вызывала какое-то время бурные дискуссии, преимущественно в околонаучных кругах. Теперь споры совершенно затихли, хотя иногда и сейчас люди, далекие от математики и логики, задумываются над вопросом о том, не станет ли с течением времени бурно прогрессирующая вычислительная техника «лучшим мыслителем», чем ее создатель — человек. Во всяком случае в шахматах вычислительные машины проявили себя просто блестяще, и можно с большой долей уверенности предположить, что уже в недалеком будущем они начнут регулярно обыгрывать лучших гроссмейстеров. В каких еще областях мышления машина может со временем превзойти человека?
Чтобы разобраться с вопросом о «машинном мышлении», нужно более ясно представить как именно «мыслит» машина и способно ли будет это специфическое «мышление» когда-нибудь составить конкуренцию живому человеческой мышлению. Для этого требуется ввести понятие
Осуществление алгоритмического процесса может быть передано машине. Благодаря своему быстродействию, она окажется способной решать задачи, недоступные человеку. Но, естественно, только задачи, для решения которых существуют алгоритмы, и никакие иные.
Потенциальная возможность передать машине осуществление алгоритмических процедур существенно стимулировала разработку математической теории алгоритмов. Первоначально недостаточно ясное понятие «алгоритма» было уточнено с помощью таких понятий как «рекурсивная функция», «машина Тьюринга», «нормальный алгоритм» и др. Со временем теория алгоритмов легла в фундамент вычислительной науки и техники, сделалась основой машинного решения математических задач, моделирования сложных процессов и автоматизации производства и управления.