В результате исследований было обнаружено распределение энергии в ионах хрома, которое мы описали и которое изображено на рис. 50, причем время жизни 2Ē уровней, оказалось около 5 мс. Это, относительно длинное, время жизни, в течение которого атомы остаются в метастабильном состоянии, и их последующий распад с испусканием излучения (радиационный распад) является ответственным за явление люминесценции рубина, т.е. явления, которое и дает материалу его красный цвет. Рубины, которые исследовал Мейман, относились к так называемым розовым рубинам, в которых концентрация ионов хрома составляет только около 0,05% по весу. Поэтому, хотя обе линии 6943 A° и 6928 А° красные, полная окраска получается розовой (отсюда и название). Измерения квантовой эффективности люминесценции, т.е. числа фотонов, испускаемых при люминесценции, по сравнению с числом поглощенных фотонов зеленого возбуждающего света, показали, что это отношение близко к единице. Это означает, что практически каждый поглощенный зеленый фотон приводит к испусканию одного красного фотона. Это результат опровергал данные Видера и делал возможным осуществление лазера.

Мейман рассчитал, что достаточно интенсивный зеленый свет может желательным образом заселить промежуточное состояние 2Ē. Это, в свою очередь, должно было изменить населенность основного состояния (уменьшить его населенность). Все эти результаты побудили его использовать рубин для первого лазеры и продолжить расчеты.

На этом этапе принципиальной проблемой было найти источник зеленого света, достаточно мощного, чтобы накачать атомы на верхний уровень. Грубо говоря, лампа излучает свет, как если бы она была черным телом с высокой температурой.

Предварительные расчеты показали, что требуется лампа с эквивалентной температурой черного тела 5000 К. Мейман начал свои расчеты с коммерчески доступными ртутными лампами, но убедился, что их характеристики на пределе. Тогда он вспомнил, что импульсные ксеноновые лампы имеют эквивалентную температуру 8000 К. Не было причин исключать работу лазера в импульсном режиме, так как во многих случаях импульсный источник был привлекательным.

Теперь мы можем легко понять динамику процесса, снова обращаясь к рис. 50. Освещение зеленым светом возбуждает некоторые ионы хрома с основного уровня (на рисунке он имеет спектроскопическое обозначение 4А2 и обозначен числом 1) в полосу уровней, обозначенную как 4F2 и числом 3. Отсюда ионы быстро, за доли микросекунды (путем передачи энергии при столкновениях с атомами решетки), переходят на уровень 2Ē, обозначенный числом 2. С него они возвращаются на основной уровень в течение ~ 5 мс, испуская красный свет.

Мейман измерил уменьшение числа ионов, остающихся на основном уровне после поглощения зеленого света на 5600 А°, путем наблюдения фиолетового света на 4100 А°, который поглощается на переходе от 4A2 на 4F1. За счет этого перехода энергия ионов хрома возрастает с основного уровня 1 в полосу, обозначенную 4F1. На образец рубина посылался интенсивный короткий импульс излучения зеленого света на 5600 А° и одновременно образец просвечивался фиолетовым светом на 4100 А°. Когда интенсивный импульс излучения на 5600 А° посылается на образец, излучение на 4100 А°, также посылаемое в это же время на образец, испытывает резкое увеличение (поглощение уменьшается), которое спадает за ~ 5 мс. Этот эффект легко объяснить. Импульс света на 5600 А°, который возбуждает ионы с основного уровня в полосу 4F2 уменьшает число ионов на основном уровне, которые можно возбудить светом на 4100 А° в полосу 4F1. Тем самым уменьшается поглощение фиолетового света. Только после ~ 5 мс, когда ионы возбужденные в полосу 4F2, пройдя уровень 2Ē, возвратятся на основной уровень, поглощение фиолетового света возвратится к первоначальному состоянию. Этот и другие эксперименты позволили Мейману рассчитать, что изменение населенности основного уровня в 3% вполне осуществимо.

Перейти на страницу:

Похожие книги