В то время, когда Джаван проводил эксперименты весной 1960 г., два исследователя Bell Labs, А. Фокс и Т. Ли, стали изучать вопрос, какие моды существуют в резонаторе Фабри—Перо. Дело в том, что резонатор Фабри—Перо сильно отличается от микроволновых резонаторов в виде замкнутых полостей. Они определили вид этих мод, и их результат побудил других исследователей Bell Labs, Гэри Д. Бонда, Джеймса Гордона и Хервига Когельника, найти аналитические решения в случае зеркал сферической формы. Важность изучения оптических резонаторов для развития газовых лазеров нельзя недооценивать. До того как были получены эти результаты, газовый лазер был, в лучшем случае, маргинальным устройством, генерация которого в сильнейшей степени зависела от юстировки концевых зеркал. Теоретические исследования резонаторов со сферическими зеркалами показали, что могут быть конфигурации, относительно слабо зависящие от юстировки зеркал, а внутренние потери в резонаторе могут быть меньшими, чем в резонаторе с плоскими зеркалами. Это позволяет использовать активные среды со значительно меньшими, чем думали раньше, усилениями. От резонатора с плоскими зеркалами практически отказались, и все открытия новых газовых лазеров делались с помощью резонаторов со сферическими зеркалами.
В 1961 г. в Bell Labs началась большая программа лазерных исследований. Исследователей, занятых другими проблемами, переориентировали на новую тематику, были приняты новые сотрудники. Решение использовать в резонаторе два одинаковых сферических зеркала, расположенных в положении их фокусов (такая конфигурация называется конфокальным резонатором), показало, каких трудностей мог бы избежать Джаван, если бы использовал такой резонатор. В результате, Вильям В. Ригрод, Хервиг Когельник, Дональд Р. Хериотт и Д. Дж. Брангачио построили весной 1962 г. первый конфокальный резонатор со сферическими зеркалами, которые концентрируют свет к оси разрядной трубки, причем эти зеркала помещались вне трубки. Это позволило получить генерацию на красной линии 6328 А. Часть света неизбежно теряется при отражениях от поверхностей окон (френелевское отражение). Этих потерь, однако, можно избежать, если наклонить окна под определенным углом, называемым углом Брюстера. В этом случае для света определенной поляризации потери практически равны нулю. Такая новая конфигурация лазера показана на рис. 57.
Красный He-Ne-лазер стал широко применяться, и до сих пор находит использование, в частности, в медицине. Кроме того, он сильно способствует пониманию принципиальных различий между лазерным (высококогерентным) и обычным (некогерентным) светом. С помощью этого лазера легко наблюдаются явления интерференции, а также модовая структура лазерного пучка, которая легко и наглядно изменяется небольшим наклоном зеркала резонатора. Также стимулировалась разработка других, многочисленных типов лазеров.
Современный He-Ne-лазер может генерировать на одном из нескольких переходах, показанных на рис. 54. Для этого могослойные зеркала изготавливаются с максимальным отражением на нужной длине волны. Генерация получается на длинах волн 3,39 мкм, 1,153 мкм, 6328 А° и даже при использовании особых зеркал, на длинах волн 5433 А (зеленая линия), 5941 А° (желтая линия), 6120 А° (оранжевая линия).
Цезиевый лазер
1961 г. был годом реализации еще двух лазеров, над которыми специалисты работали с самого начала появления концепции лазера. Одним из них был цезиевый лазер. После того как Таунс и Шавлов написали свою работу, было решено, что Таунс попытается построить лазер на парах калия. Выбор был обусловлен тем, что расчеты показывали возможность работы, а также тем, что пары калия являются простым одноатомным газом с хорошо известными свойствами. Таунс хотел работать с системой, свойства которой можно было проанализировать в деталях. Позднее он говорил: «Мой стиль физики заключается в том, чтобы обдумать проблему теоретически, проанализировать ее, а затем поставить эксперимент, который должен работать. Если он не получается, вы должны заставить его заработать. Вы анализируете и усиливаете теоретические условия в лаборатории, до тех пор, пока вы не добьете проблему». Его предварительные расчеты показывали, что калиевый лазер будет иметь высокомонохроматическое излучение, что было бы весьма полезно для специальных применений. Но были и недостатки: малый коэффициент полезного действия (около 0.1%) и выходная мощность в доли милливатта.