Антиномии, или парадоксы, возникающие в ходе развития науки, были взяты нами в качестве примера ситуаций, которые делают необходимой постановку собственно методологических задач. В этих ситуациях фактически формируется и выделяется та действительность, которая становится предметом методологии как науки. Эта действительность —
Мы можем изобразить ее строение в блок-схеме, если выделим и перечислим основные составляющие всякой деятельности. Специальный анализ показывает, что в любой акт познавательной деятельности обязательно входят: 1) задачи (или требования), 2) объекты, 3) средства, 4) формы знаний и 5) процедуры, создающие их (см. схему 2).
Эту схему можно рассматривать как первое приближенное изображение предмета методологических исследований.
Очень важно также подчеркнуть, что постановка вопроса об объекте как таковом, в отличие от «данности» его в той или иной форме знания, появляется впервые отнюдь не в специально-научных исследованиях, как это обычно думают, а только в методологическом анализе. В специально-научных исследованиях, где имеется одно или несколько легко соединимых друг с другом знаний об объекте, не возникает вопросов об объекте как таковом и нет нужды противопоставлять его знаниям. Мы уверены, что объект таков, каким он дан нам в этих «знаниях». Только в ситуациях антиномий и аналогичных им нам приходится выделять объект, ставить вопрос о его природе и стараться изобразить его как таковой, в форме, отличной от всех уже существующих о нем знаний [
Но это представление объектов в методологии существенно отличается от их представления в специальных науках: оно создается как изображение их «высшей» объективности, освобожденной от частной формы тех или иных специальных задач. По этой же причине методологическая онтология не имеет ничего общего с натурфилософией: она существует в системе методологии и создается не на основе анализа физической, химической или какой-либо иной эмпирии, а на основе анализа человеческой деятельности — производства (практики) и мышления.
Таким образом, переходя в область методологического исследования, мы формируем совершенно особый предмет, который не совпадает с предметом ни одной частной науки. И мы можем исследовать и описывать этот предмет только с помощью
О том, что это утверждение не является общепризнанным, что вокруг него сейчас еще идет борьба, говорит хотя бы широко распространенный и принятый многими тезис Д. Гильберта, что обоснование математики есть дело самой математики [