Математическая форма функции выражает зависимость двух свойств объекта друг от друга, но в ней нет выражения связи, и ничто не дает оснований для введения этого понятия. Другими словами, понятие связи не может появиться, пока мы пользуемся одними лишь таблицами и математическими формами выражения зависимостей. Связь появляется и может быть выделена как нечто особое и самостоятельное только с введением «искусственной» конструкции связанных между собой объектов. Именно в этой конструкции впервые она получает реальное вещественное существование в виде стержня, пружины или веревки — впервые становится особым, можно сказать, вещественным объектом. Но если мы возьмем эту конструкцию саму по себе, то в ней тоже не будет никакой связи; стержень и пружина так и останутся просто стержнем и пружиной. Они становятся «связью» только благодаря тому, что сама эта конструкция выступает в роли «объяснительной модели» зависимости свойств, эмпирически выявленной в изучаемом объекте. Иначе говоря, определенные элементы «инженерных конструкций» (стержни, пружины, приводные ремни, передаточные механизмы и т. п.) выступают в качестве «связей» только в силу того, что они принимаются за «основание» тех или иных зависимостей свойств объектов.
Очень важно подчеркнуть еще одно обстоятельство. Связи являются объектами особого рода, но в своей непосредственной данности как объекты они существуют только в объяснительной модели. В изучаемых «естественных» объектах природы нет ничего похожего на них, ни стержней, ни пружин. По сути дела они
Но это соответствие начинает нарушаться, как только мы переходим в эмпирическом анализе от зависимостей между двумя параметрами-свойствами к зависимостям между многими параметрами. Простейший из этих случаев мы уже разобрали выше, воспользовавшись приемом «двойного знания» (см. главу «Системы предмета и системы объекта»). Мы предположили, что структура изучаемого нами объекта состоит из трех элементов А, В, С и двусторонних связей между ними. С помощью эмпирических процедур можно выявить зависимости между любыми двумя параметрами-свойствами объекта и выразить их в форме математических функций. Всего получится шесть разных выражений:
Для каждого из них можно будет подобрать модель соответствующего механизма связи, и таким образом получится шесть разных моделей для изображения единой структуры объекта. Но так как объект у всех этих моделей один, естественно, встанет и всегда встает задача объединить их все в одной синтетической модели. Сделать это механически невозможно: ведь в каждой функции фактически «присутствует», как мы уже выяснили выше, вся структура объекта, а следовательно, и каждая из шести моделей механизмов связи является частным функциональным аналогом всей структуры. Но если синтез будет производиться не механически, то это означает только одно — что будет сконструирована какая-то новая модель, с новыми элементами и связями, причем эти связи будут такими, что ни одна из них в отдельности не будет соответствовать механизмам, моделирующим эмпирически выявленные зависимости; лишь вместе и во взаимодействии друг с другом в рамках единого механизма эти связи будут давать основу для объяснения всех перечисленных выше функций (схема 15).