Другими примерами процессов этой же группы будут: сложение нескольких чисел, дающее ответ на вопрос о количестве объектов в совокупности, части которой находятся в разных местах; вычисление длины окружности на основании формулы l = 2πr, после того как измерена длина радиуса этой окружности; использование уравнения химической реакции для ответа на вопрос, какие вещества получатся, если мы приведем во взаимодействие другие определенные вещества, и т. п. Генетически все эти процессы значительно сложнее, чем процессы, основывающиеся на знаковой форме атрибутивного вида, и, в частности, возникают как сокращения комбинаций из процессов решения вида (2) и (3), но с функционарной точки зрения, т. е. с точки зрения способа непосредственного осуществления, они ничем принципиально не отличаются от процессов, разобранных выше. Для всех процессов этой группы характерно, что большая часть составляющей их деятельности лежит в плоскости знаковой формы (есть, следовательно, деятельность не с объектами, а со знаковыми выражениями) и имеет чисто формальный характер.

(4) К четвертой группе мы относим все те случаи, когда объект и вопрос относительно него заданы таким образом, что для решения задачи нужно осуществить сложную комбинацию замещений исходного объекта различными знаковыми формами (часто также и одних знаковых форм другими) и преобразований (формальных и содержательных) этих знаковых форм, т. е. процессы, представляющие собой комбинации процессов вида (2) и (3). Характерными примерами процессов такого вида являются решения геометрических задач. Важно специально отметить, что на определенных этапах решения этих задач знаковые формы, замещающие исходный объект, рассматриваются как объекты особого рода и к ним применяется особая деятельность, напоминающая содержательные преобразования собственно объектов, рассмотренные под п. (2). Специфику подобных процессов решения задач составляют каждый раз порядок и способы комбинирования элементарных процессов вида (2) и (3). Соответственно мы получаем для изображения этих процессов решения задач различные формулы. Например, процесс решения геометрической задачи, при котором исходная фигура включается в более сложную фигуру и получает в связи с этим новые определения, позволяющие в соответствии с уже имеющейся сложной знаковой формой приписать этой фигуре (а вместе с тем и объекту X) новое свойство, может быть изображен в формуле:

где (β) есть геометрическая фигура, замещающая на основе операции Δ исходный объект, (α) — эта же фигура, получившая новое определение, = — знак эквивалентного замещения, Δ — операция, выделяющая в (α) свойство, которое фиксируется в знаке (В), а (А) — знаковое выражение свойства, которое в соответствии с формальным знанием (В) —> (А) приписывается (α), затем (β) и, наконец, самому X. Важно также отметить, что часто повторяющиеся комбинации элементарных процессов закрепляются в виде определенных строго фиксированных приемов; в качестве примера можно указать на прием среднего пропорционального в геометрии.

5. Необходимым условием решения задач вида (2), (3) и (4) являются умения оперировать (содержательно и формально) со знаковой формой. Эти способы оперирования нередко бывают очень сложными; они, как правило, отделяются от тех задач, для решения которых возникли, и выделяются в особые научно-теоретические задачи. Геометрия, например, возникла из оперирования с вещами окружающего мира и для решения сугубо практических задач, но как наука она имеет дело исключительно с чертежами фигур и другими знаками и отвечает на вопросы, поставленные относительно них; подобно этому арифметика имеет дело только с числами, алгебра — с величинами, выраженными в буквах, и т. п. По отношению к исходным эти новые задачи являются вспомогательными, вторичными, или, как говорят, задачами других, «более высоких» уровней. Они имеют смысл и значение лишь как средства решения исходных задач, но это не мешает им обособляться и существовать относительно самостоятельно в виде структур, соответствующих перечисленным выше. Таким образом, складывается сложная иерархия относительно самостоятельных и в то же время тесно связанных друг с другом познавательных задач и способов их решения (см. [Ладенко, 1958 b; 1959]). Важно специально отметить, что конкретный анализ различных уровней этой системы дает, по-видимому, возможность классифицировать и все разнообразные виды знаковых форм и действий с ними в соответствии с тем местом, которое они занимают в этой иерархии задач.

Перейти на страницу:

Похожие книги