В принципе, тут всё прозрачно, кроме одной вещи. В первоначальном плане книги этот раздел включал в себя главу об ионизаторах воздуха и о работе Александра Чижевского. Подробнее изучив вопрос, я пришёл к выводу, что ионизация воздуха в гигиенических целях – процедура более чем сомнительной научности. Исследования показывают, что влияние ионизированного воздуха на здоровье человека или отсутствует вовсе, или сравнимо с эффектом плацебо. Так что люстру Чижевского я из книги всё-таки исключил.

Добро пожаловать в научное изобретательство!

<p>Глава 9. История рафанобрассики</p>

Гибриды, то есть организмы, полученные скрещиванием различных видов, известны давно – хотя бы потому, что межвидовые отношения широко распространены в дикой природе. Например, самые ранние останки «волкособов», то есть гибридов волков и одомашненных собак, найденные в Северной Америке, насчитывают до 10 000 лет. Мифология самых разных культур пестрит различными межвидовыми гибридами – это и кентавр, и Минотавр, и гиппокампус, и сфинкс.

Робкие попытки описать наследственность и классифицировать её признаки учёные и философы – греческие, арабские, индийские – делали и в Античности, и в Средневековье. Но серьёзные научные исследования в области гибридизации в животном и растительном мире начались в первой половине XVIII века. Опыты с гибридизацией растений проводили Карл Линней, Йозеф Готлиб Кёльрёйтер, Карл Фридрих фон Гертнер и др. Кёльрёйтер с 1759 года вплоть до смерти в 1806 году провёл более 500 экспериментов со 138 видами растений и опубликовал четыре крупнейшие работы XVIII века по гибридизации. Именно он в 1763 году описал главную проблему растительных гибридов – их стерильность. Ту самую проблему, которую в 1924 году решил Георгий Дмитриевич Карпеченко.

<p>Краткое введение в мейоз и конъюгацию</p>

Для того чтобы рассказать об открытии Карпеченко и показать значимость его работы, я должен сперва сделать очень краткий обзор генетических тонкостей половой жизни растений (и отчасти всех живых организмов).

В первую очередь я говорю об эукариотических организмах, то есть о тех, клетки которых содержат ядра. В ядре каждой клетки находятся хромосомы – компактно упакованные с помощью специальных белков комплексы нуклеиновых кислот, содержащие наследственную информацию. Основа каждой хромосомы – это, собственно, та самая длинная спиралевидная молекула ДНК, которую так любят изображать на псевдобиологических экранных заставках. Полный набор хромосом, содержащихся в одной клетке, называется кариотипом.

Например, нормальный кариотип мужчины Homo sapiens записывается как 46, XY, а женщины – 46, XX. Это означает, что у человека в соматических (не половых) клетках по 46 (23 пары) хромосом, и из них 44 – одинаковые (аутосомы). Оставшиеся две хромосомы – это как раз пары XY и XX, которыми отличаются разнополые представители одного вида. У женщин хромосомы этой пары одинаковы (X и X), а у мужчин две оставшиеся хромосомы – непарные (X и Y). Половые клетки (гаметы) имеют одинарный (гаплоидный) набор хромосом, то есть у человека это 22+X или 22+Y. У женщин, как нетрудно догадаться, может образоваться только гамета с 22+X, а вот у мужчин – и та и другая с равной степенью вероятности. Соответственно, при слиянии сперматозоида с 22+X и яйцеклетки получается набор 44+XX (девочка), а при слиянии сперматозоида с 22+Y и яйцеклетки – 44+XY (мальчик). Если кариотип каким-то образом нарушается, то это приводит к появлению генетических заболеваний: синдрома Дауна, синдрома кошачьего крика, синдрома Патау и т. д.

Количество пар хромосом у разных видов разное. У людей, как мы уже выяснили, 23 пары. У орангутанов – 24 пары, у кошек – 19 пар, у коз – 30 пар, у индеек – 40 пар, а у мух-дрозофил всего 4 пары. Очевидно, что от количества хромосом общий уровень организации животного не зависит. У растений ситуация похожая: например, кариотип риса – 12 пар, редиса – 9 пар и т. д.

От школьного курса можно сразу перейти к гибридам. Половое размножение живых существ начинается с мейоза, при котором из одной диплоидной (с двойным набором хромосом) зародышевой клетки образуются четыре гаплоидные (с одинарным набором хромосом). Именно в процессе мейоза из 44+XY получаются наборы 22+X и 22+Y. Мейоз имеет сложную многофазную структуру, и одной из первых его стадий является слияние свободно плавающих в ядре одинаковых хромосом в те самые пары (каковых у человека 23), называемое конъюгацией.

У многоклеточных организмов мейоз является частью более сложного процесса – гаметогенеза, в ходе которого формируются специализированные половые клетки (гаметы), содержащие в себе одинарные наборы хромосом. При оплодотворении мужские и женские гаметы сливаются, образуя клетку с двойным набором хромосом.

Перейти на страницу:

Поиск

Все книги серии Библиотека фонда «Траектория»

Похожие книги