Отмечу, что ускоренные частицы встречаются не только в циклотронах и синхрофазотронах, но и в знакомых многим из нас и применяющихся на практике устройствах. Например, в электронно-лучевой трубке (кинескопе) используется направленный поток электронов, который движется к экрану (мишени): это позволяет преобразовать электрический сигнал в изображение (оптическую информацию) и наоборот. Так что если у вашей бабушки сохранился телевизор с ЭЛТ, то вот вам простейший ускоритель. Ещё пример – обычный рентген в поликлинике. Рентгеновские лучи генерируются с помощью специальной электровакуумной трубки, которая является, по сути, ускорителем электронов. Когда разогнанные электроны попадают в материал анода и тормозятся, они резко теряют энергию, испуская так называемое тормозное излучение в рентгеновском диапазоне. Так что рентгеновская трубка тоже дальний родственник Большого адронного коллайдера.
Для получения изображения на экране или генерации рентгеновского излучения слишком мощный ускоритель не нужен, он даже будет вреден. А вот того, чтобы разгонять частицы до очень высоких энергий, он понадобится. Такие частицы являются мощнейшим исследовательским инструментом, изучение их столкновений друг с другом и с различными мишенями может многое сказать о физических свойствах самих частиц, мишеней и в целом об окружающем мире. Ускоритель в этом плане можно назвать микроскопом, который позволяет исследовать мир элементарных частиц, а энергию соударения – смысловым аналогом разрешающей способности объектива, то есть чем выше энергия, тем больше информации об исследуемых объектах мы получаем.
«Как столкновение может о чём-то рассказать?» – спросите вы. Я отвечу: «Косвенно». Нам не под силу заглянуть внутрь атомного ядра с помощью даже самых мощных микроскопов. Значит, информацию нужно получить каким-то другим способом.
Столкновение двух частиц приводит к тому, что из их энергии рождаются новые частицы. Помните знаменитую эйнштейновскую формулу
Энергия частиц измеряется в электрон-вольтах (эВ), где 1 эВ – это энергия, которую приобретает частица с единичным зарядом (например, электрон), проходя разность потенциалов в 1 вольт. Энергии, превышающие энергию покоя частицы (то самое
Данные о результатах столкновения регистрируются с помощью специальных блоков – детекторов, которые фиксируют заряд, энергию и направление движения образующихся частиц, тем самым позволяя определять их тип. Детекторы могут быть очень разными – от простейших (фотоплёнка) до сложнейших устройств высотой с четырёхэтажный дом.
Введение в ускорители
Ускоритель заряженных частиц – это устройство, которое использует комбинацию электрических и магнитных полей. Электрическое поле ускоряет заряженные частицы, а магнитное определяет направление их движения. Но основной вопрос, который, наверное, возникает у читателя: зачем ускорители строят такими огромными? Почему Большой адронный коллайдер имеет длину кольца в 27 километров?! И почему он вообще кольцеобразный, проще ведь разгонять по прямой – или нет?
Нет. Чем больше длина траектории, тем большую энергию можно придать частицам. А по замкнутому кольцу частицы способны двигаться бесконечно, круг за кругом, и на каждом круге электрическое поле будет «подхлёстывать» их, разгоняя до всё большей и большей энергии. Конечно, существуют линейные ускорители, но максимальные энергии, достижимые в них, значительно меньше, нежели в циклических (кольцевых).
Размеры ускорителей обусловлены необходимостью поддерживать сильное магнитное поле, которое «поворачивает» частицы. Чем большую энергию при разгоне приобретают частицы и чем меньше радиус их поворота, тем большее магнитное поле требуется для удержания их на траектории. Соответственно, для того, чтобы обойтись меньшим магнитным полем, нужно увеличивать радиус: чем он больше, тем ближе траектория к прямой линии и тем меньше энергии требуется на корректировку движения. А увеличение радиуса поворота естественным образом ведёт к увеличению размера колец ускорителя.