Вот тут-то и используется тот факт, что плазма в токамаке служит обмоткой. Ток, протекающий через неё, создаёт вокруг себя собственное магнитное поле, которое называют полоидальным. Для контроля этого поля в конструкции токамака предусмотрены полоидальные катушки, «надетые» на ось тороидальной камеры. Полоидальное поле слабее тороидального, но его достаточно, чтобы ограничивать траекторию плазмы, движущейся вдоль силовых линий, и не допускать её прикосновения к стенкам. То есть, по сути, в токамаке движение плазмы обеспечивается двумя магнитными полями: одно задает тороидальную траекторию плазменного шнура, второе стабилизирует её, не давая шнуру расплываться.

Как и стелларатор, токамак имеет свои преимущества и недостатки. Плюс в том, что плазма в нём теряет значительно меньше энергии и поддерживать нужные её характеристики проще. А основной недостаток токамака – в сложности конструкции и значительно более высокой стоимости, чем у конкурента. Кроме того, в отличие от стелларатора, который может работать непрерывно, токамак – «импульсное» устройство, потому что для появления тока во вторичной обмотке (плазменном жгуте) ток в первичной обмотке должен возрастать. А увеличивать его до бесконечности невозможно, так что процесс приходится прерывать и начинать заново.

<p>Токамак против стелларатора: день завтрашний</p>

В теории разработаны ещё несколько концепций устройств магнитного удержания плазмы. Например, пробкотрон, или магнитное зеркало, – незамкнутая система, свойств которой не хватает, к сожалению, для достижения плазмой должных температур. Так что реально работают только токамаки и стеллараторы.

Тут надо заметить, что, несмотря на появление устройств такого типа в начале 1950-х годов, реальную функциональность они обрели лишь к концу 1960-х. Первым по-настоящему рабочим токамаком, да и вообще установкой для магнитного удержания плазмы, считается Т-3, построенный в Курчатовском институте в 1968 году: на нём впервые в истории удалось достигнуть температуры в 10 миллионов кельвинов. Стеллараторам до такой температуры было далеко, притом что и её не хватало для управляемой термоядерной реакции. Это достижение на длительное время отодвинуло стеллараторы на второй план – вплоть до 2000-х годов абсолютное большинство магнитных ловушек для плазмы в мире были токамаками.

На сегодняшний день токамаки используются в лабораториях России, США, Японии, Китая, Великобритании, Франции – всего на май 2018 года существовало около 30 токамаков; самый старый работающий экземпляр был построен ещё в середине 1960-х в Курчатовском институте, после чего передан Чехословакии и многократно модифицирован. Сегодня он находится в Чешском техническом университете в Праге.

Конкуренция обострилась в 2000-х годах с появлением квазисимметричных стеллараторов. Первым таким устройством стал HSX (Helically Symmetric eXperiment), построенный в Висконсинском университете в Мадисоне по проекту профессора Дэвида Андерсона. На самом деле за хитрым названием прячется очередная конфигурация «бублика» – как я уже говорил, варьировать мятый тор стелларатора можно десятками разных способов, главное – найти оптимальную конфигурацию, которая позволит снизить потери энергии. Разработанные в последние годы конфигурации и особые режимы как раз к этому и привели – стеллараторы, избавившись от своего основного недостатка, постепенно начинают успешно конкурировать с токамаками. В 2015 году в немецком городке Грайфсвальд начал работу сверхсовременный стелларатор Wendelstein 7-X, и с его помощью уже добились температур плазмы в районе 80 млн градусов Цельсия.

Основная надежда мирового исследовательского сообщества сейчас связана с проектом ITER (Международный экспериментальный термоядерный реактор). Это примерно как МКС, только в области термоядерных реакций. Задуман он был ещё в середине 1980-х при участии СССР, США, Японии и ряда европейских государств, но ввиду множества политических и финансовых проблем практические работы начались лишь в 2005 году. Строят ITER неподалёку от Марселя (Франция) с 2007 года и сейчас, в 2019-м, его уже заканчивают. Сердце проекта – это токамак внешним диаметром 19 метров. Я не буду вдаваться в тонкости его конструкции – вы можете найти информацию самостоятельно. По графику работ первую плазму в токамаке ITER получат в 2025 году, а первую управляемую термоядерную реакцию с выделением энергии проведут лишь в 2035-м, когда эту книгу или благополучно забудут, или будут проходить в школах.

Но как приятно думать о том, что главным элементом такого крупного международного проекта – в нём задействовано 35 стран – стало советское изобретение!

<p>Глава 17. Не путать с лазером</p>
Перейти на страницу:

Поиск

Все книги серии Библиотека фонда «Траектория»

Похожие книги