Таким образом, в нашей реакции атомами-окислителями являются атомы железа, а атомами-восстановителями – атомы углерода.

Вещество-окислитель – исходное вещество данной ОВР, содержащее атомы-окислители

Вещество-восстановитель – исходное вещество данной ОВР, содержащее атомы-восстановители.

В нашей реакции веществом-окислителем является оксид железа(III), а веществом-восстановителем – оксид углерода(II).

В тех случаях, когда атомы-окислители и атомы-восстановители входят в состав одного и того же вещества (пример: реакция 6 из предыдущего параграфа), понятия " вещество-окислитель" и " вещество-восстановитель" не используются.

Таким образом, типичными окислителями являются вещества, в состав которых входят атомы, склонные присоединять электроны (полностью или частично), понижая свою степень окисления. Из простых веществ это прежде всего галогены и кислород, в меньшей степени сера и азот. Из сложных веществ – вещества, в состав которых входят атомы в высших степенях окисления, не склонные в этих степенях окисления образовывать простые ионы: HNO3 (N+V), KMnO4 (Mn+VII), CrO3 (Cr+VI), KClO3 (Cl+V), KClO4 (Cl+VII) и др.

Типичными восстановителями являются вещества, в состав которых входят атомы, склонные полностью или частично отдавать электроны, повышая свою степень окисления. Из простых веществ это водород, щелочные и щелочноземельные металлы, а также алюминий. Из сложных веществ – H2S и сульфиды (S–II), SO2 и сульфиты (S+IV), йодиды (I–I), CO (C+II), NH3 (N–III) и др.

В общем случае почти все сложные и многие простые вещества могут проявлять как окислительные, так и восстановительные свойства. Например:

SO2 + Cl2 = S + Cl2O2 (SO2 – сильный восстановитель);

SO2 + C = S + CO2 (t) (SO2 – слабый окислитель);

C + O2 = CO2(t) (C – восстановитель);

C + 2Ca = Ca2C (t) (С – окислитель).

Вернемся к реакции, разобранной нами в начале этого параграфа.

+III -II

+II -II

0

+IV -II

Fe2O3

+

3CO

=

2Fe

+

3CO2.

Обратите внимание, что в результате реакции атомы-окислители (Fe+III) превратились в атомы-восстановители (Fe0), а атомы-восстановители (C+II) превратились в атомы-окислители (C+IV). Но CO2 в любых условиях очень слабый окислитель, а железо, хоть и является восстановителем, но в данных условиях значительно более слабым, чем CO. Поэтому продукты реакции не реагируют друг с другом, и обратная реакция не протекает. Приведенный пример является иллюстрацией общего принципа, определяющего направление протекания ОВР:

Окислительно-восстановительные реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя.

Окислительно-восстановительные свойства веществ можно сравнивать только в одинаковых условиях. В некоторых случаях это сравнение может быть проведено количественно.

Выполняя домашнее задание к первому параграфу этой главы, вы убедились, что подобрать коэффициенты в некоторых уравнениях реакций (особенно ОВР) довольно сложно. Для упрощения этой задачи в случае окислительно-восстановительных реакций используют следующие два метода:

а) метод электронного баланса и

б) метод электронно-ионного баланса.

Метод электронного баланса вы изучите сейчас, а метод электронно-ионного баланса обычно изучается в высших учебных заведениях.

Оба эти метода основаны на том, что электроны в химических реакциях никуда не исчезают и ниоткуда не появляются, то есть число принятых атомами электронов равно числу электронов, отданных другими атомами.

Число отданных и принятых электронов в методе электронного баланса определяется по изменению степени окисления атомов. При использовании этого метода необходимо знать состав как исходных веществ, так и продуктов реакции.

Рассмотрим применение метода электронного баланса на примерах.

Пример 1. Составим уравнение реакции железа с хлором. Известно, что продуктом такой реакции является хлорид железа(III). Запишем схему реакции:

Fe + Cl2 FeCl3.

Определим степени окисления атомов всех элементов, входящих в состав веществ, участвующих в реакции:

0

0

+III –I

Fe

+

Cl2

FeCl3.

Атомы железа отдают электроны, а молекулы хлора их принимают. Выразим эти процессы электронными уравнениями:

Fe – 3e = Fe+III,

Cl2 + 2e = 2Cl–I.

Чтобы число отданных электронов было равно числу принятых, надо первое электронное уравнение умножить на два, а второе – на три:

2

3

Fe – 3e = Fe+III,

Cl2 + 2e = 2Cl–I

2Fe – 6e = 2Fe+III,

3Cl2 + 6e = 6Cl–I.

Введя коэффициенты 2 и 3 в схему реакции, получаем уравнение реакции:

2Fe + 3Cl2 = 2FeCl3.

Пример 2. Составим уравнение реакции горения белого фосфора в избытке хлора. Известно, что в этих условиях образуется хлорид фосфора(V):

0

0

+V –I

P4

+

Cl2

PCl5.

Перейти на страницу:

Похожие книги