Представители проекта Event Horizon Telescope приводят такой пример: разрешения, достигнутого в проекте, достаточно, чтобы читать газету в Нью-Йорке, находясь в уличном кафе в Париже («enough to read a newspaper in New York from a sidewalk café in Paris»).

Казалось бы, в силу большого расстояния тени ЧД должны быть очень малы. Ведь в обычной жизни мы привыкли к тому, что, чем дальше находится объект, тем меньше его угловой размер для нас.

© EHT

Однако на космологических расстояниях расширение Вселенной приводит к тому, что наблюдаемый угловой размер объекта начинает не уменьшаться, а увеличиваться с ростом красного смещения. Это, в свою очередь, приводит к тому, что тени от очень далёких ЧД могут иметь достаточно большие угловые размеры, чтобы их можно было наблюдать с помощью телескопов следующих поколений. Например, с помощью телескопов имени Джеймса Уэбба (который недавно был запущен) и «Миллиметрон» (запуск которого намечен на начало 2030-х годов).

Впервые задача получить изображение тени чёрной дыры была поставлена в 2017 году. Для этого сформировали консорциум под названием «Телескоп горизонта событий». Это была коллаборация из восьми крупнейших субмиллиметровых антенн, расположенных по всему земному шару. Вместе они работают как гигантский интерферометр с диаметром, равным примерно диаметру Земли.

Теоретическое разрешение «Телескопа горизонта событий» составляет несколько десятков угловых микросекунд, то есть несколько стотысячных долей угловой секунды. Чтобы понять, насколько это маленькая величина, возьмите пончик и положите его на поверхность Луны. Так вот, размер пончика на расстоянии Луны – это тот размер, который имеют тени зафиксированных ЧД. Задача буквально на грани фантастики.

<p>Фотографии чёрных дыр и очередное подтверждение ОТО</p>

Решение сложнейших задач толкает людей, этим занимающихся, на самые разнообразные ухищрения, что в итоге приводит к развитию техники и технологий. Так, попытку получить фото чёрной дыры, на мой взгляд, можно сравнить со стремлением сфотографировать мяч для гольфа на поверхности Луны.

Это кажется невозможным. Но 200 человек решили, что можно сделать то, что считается невозможным. И сделали.

А вот человеком, сделавшим так, чтобы усилия всех остальных не пропали даром, оказалась аспирантка MIT Кэти Боуман. Она разработала алгоритм для визуализации полученных данных. Без неё эти данные так и остались бы огромным нагромождением данных, понятных только специалистам.

<p>Что мы видим и является ли это изображение фотографией?</p>

Видим мы так называемую тень чёрной дыры – кольцевую структуру, состоящую из вещества, падающего на чёрную дыру. Вещества разогретого и потому светящегося. Тёмное пятно в середине – не сама чёрная дыра, а зона ниже последней устойчивой орбиты, с которой фотоны ещё могут вырваться в нашу сторону. Сам предел горизонта событий несколько меньше. Но его мы уже не видим.

Интерферометр получает достаточно сложную цифровую картину интерференционных линий, из которой математическими методами и восстанавливается то изображение, которое нам показывают.

Фото тени чёрной дыры в центре галактики М87, представленное первым

Сравнение размеров горизонтов событий чёрных дыр M87 и Стрелец A*. Чёрная дыра М87, по расчётам, имеет массу 6,5 млрд. Солнц, Стрелец A* – около 4,5 млн Солнц

ЧД в галактике М87, изображение тени которой было опубликовано в 2020 году, в 1000 раз больше ЧД, находящейся в центре нашей галактики, но она и в 1000 раз дальше. Поэтому получается примерно одно и то же.

К слову сказать, наблюдения и ЧД в галактике М87 и ЧД в центре Млечного Пути были сделаны в 2017 году. Но почему же тогда специалисты сначала работали над получением изображения тени ЧД в другой галактике? Всё дело в сложности этого процесса.

Помимо того, что ЧД в галактике М87 находится в области, которая меньше заслонена пылью и газом, она, напомню, в 1000 раз больше. Из-за этого обращение звёзд и светящихся облаков вокруг неё происходит в течение месяцев. За это время яркость не успевает сильно измениться.

Фото тени чёрной дыры в центре галактики Млечный Путь

Вокруг нашей ЧД вращение происходит быстрее, из-за чего интерференционная картина постоянно меняется. Поэтому с точки зрения вычислений эта задача значительно сложнее и занимает гораздо больше времени.

Во время релиза фотографии тени ЧД в центре нашей галактики довольно подробно рассказывалось, как все изображения делились на четыре группы. Каждую обрабатывали отдельно, чтобы убрать шумы. В результате получили одно изображение в каждой группе. А уже из них – средневзвешенное изображение.

То, что было представлено общественности, является радиоизображением. Есть ли разница между изображением, полученным путём наблюдения длин волн в видимом и радиодиапазонах? Нет. И световые, и радиоволны – это электромагнитные волны. Просто из-за разницы во взаимодействии с веществом мы по-разному их фиксируем. Так что да, нам показали именно фотографию тени чёрной дыры.

Перейти на страницу:

Все книги серии История и наука Рунета. Подарочное издание

Похожие книги