В XVIII веке математики поняли, что применение мнимых чисел позволяет решить любое уравнение. Это вывод оказался настолько важным, что его стали позиционировать как основную теорему алгебры. Уравнение, записанное с помощью комплексных чисел, всегда имеет решение в виде комплексных чисел. Дверь, в которую вошел Рафаэль Бомбелли, для того чтобы изучить квадратные корни отрицательных чисел, оказалась дверью в изолированную комнату. Но что это была за комната! Болезненные чувства, испытываемые математиками по отношению к мнимым числам, уступили место радости. В настоящее время концепция числа i считается вполне естественным и эффективным расширением числовой системы. Благодаря введению единственного символа математики получили изысканно самодостаточную абстрактную вселенную. Это была выгодная сделка!

Мнимые числа — главные герои двух самых известных примеров математической красоты. Один из них — картина (о которой мы поговорим немного позже), а другой — уравнение, известное как тождество Эйлера. В 2003 году, во время атаки экотеррористов на автосалон в Лос-Анджелесе, эту формулу нанесли спреем на бок внедорожника. Характер данного рисунка привел к аресту студента, изучавшего физику в Калифорнийском технологическом институте [10]. «Все должны знать тождество Эйлера», — объяснил он судье. Безусловно, студент был совершенно прав, но от разрисовывания автомобилей все же следует воздержаться. Тождество Эйлера — это «быть или не быть» математики, самая знаменитая формула и фрагмент культурного наследия, находящий отклик и за пределами своей области:

e + 1 = 0

Это поразительное равенство. Оно объединяет пять самых важных чисел в математике: 1 — первое натуральное число; 0 — абстрактное представление понятия «ничего»; π — отношение длины окружности к диаметру; е — экспоненциальная константа; i — квадратный корень из минус единицы. Все эти числа возникли в отдельных областях исследований и при этом образуют идеальное сочетание. Невозможно было даже представить себе столь безукоризненный синтез математической мысли. В математике красота — это изысканность формулировок и установление неожиданных связей. Не существует другого уравнения, которое было бы столь же кратким и в то же время столь же глубоким.

Но что же все-таки значит то, что у действительного числа (числа е) мнимый показатель степени (iπ)? В XIX столетии профессор математики Гарвардского университета Бенджамин Пирс ответил на этот вопрос так: «Мы не можем понять и не знаем, что это значит. Но мы доказали это, следовательно, оно должно соответствовать истине». Пирс был совершенно прав. Математика начинается с исходных предположений и приводит туда, куда они ведут. Именно поэтому она столь увлекательна. На самом деле Эйлер открыл эту формулу, позабыв о смысле. Поскольку тождество Эйлера — самое известное уравнение в математике, я бы оказал вам плохую услугу, если бы хотя бы кратко не рассказал эту историю.

Единственное, что вам понадобится в качестве подготовки, — принять без доказательства три следующих уравнения. Многоточия в конце означают, что правая сторона уравнения продолжается до бесконечности:

Если x равно 1, то первый ряд дает нам формулу расчета экспоненциальной константы е, о которой шла речь в предыдущей главе. (Помните, что факториал числа n, записываемый как n!, означает, что это число умножается на все числа от 1 до n.) Следующие два бесконечных ряда — это синус и косинус x, тригонометрические функции, которые тоже должны быть знакомы вам по предыдущим главам. Однако, для того чтобы ряды синуса и косинуса пригодились нам здесь, необходимо использовать специальную единицу измерения — радиан, а не традиционную единицу — градус. Полный круг, или 360 градусов, — это 2π радиан, а половина круга, или 180 градусов, — π радиан. (Радиан называется именно так, поскольку 1 радиан — это угол в центре круга, образующий дугу окружности, длина которой равна ее радиусу, как показано ниже. Радиан — более естественный способ измерения угла, чем градусная система, известная со времен Вавилона. Начиная с XVIII века математики отдают предпочтение измерению углов в радианах [11].)

Радиан

На интуитивном уровне невозможно понять, что означает возвести число (например, число е) в мнимую степень. Однако Эйлер понял, что это можно сделать алгебраическим способом, воспользовавшись представленным выше бесконечным рядом для ex. Например, если мы подставим ix вместо x, получится следующее уравнение:

Убрав скобки, получим такое уравнение:

Мы можем еще больше упростить это уравнение, поскольку по определению i2 = −1:

i3 = i × i × i = i2 × i = –1 × i = –i,

i4 = i2 × i2 = –1 × –1 = 1,

i5 = i4 × i = 1 × i = i,

i6 = –1

И так далее.

Другими словами, вместо членов ряда i2, i4, i6, i8 … мы можем подставить значения −1, 1, −1, 1 …, а вместо i3, i5, i7, i9 … — −i, i, −i, i … Следовательно, уравнение можно записать так:

Закономерность легче увидеть, если выделить мнимые члены жирным шрифтом:

Этот ряд можно преобразовать так:

Перейти на страницу:

Похожие книги