Ракета пленяет «звездоплавателей» тем, что она может лететь и в безвоздушном пространстве, так как не нуждается в кислороде для сгорания топлива. Кислород входит в состав горючего, как это имеет место при начинке ракеты порохом, или же запасается в жидком виде, как это проектировал Циолковский. В безвоздушном пространстве, конечно, только и можно летать на ракете, скорость которой будет при этом очень большой, так как тут нет сопротивления воздуха.
Но если мы собираемся летать в пределах земной атмосферы, то, разумеется, выгоднее не таскать с собой в баллонах жидкий воздух, а брать его прямо из атмосферы.
Как средство межпланетных сообщений, ракетные двигатели представляют для нас главным образом теоретический интерес. Ведь для преодоления земного притяжения ракета должна развить скорость до 40 тысяч километров в час. Существующие же виды горючего и материалов не дают возможности достигнуть таких скоростей. Это не значит, конечно, что и в будущем полеты на Луну будут совершаться только в фантастических романах. Ряд очень серьезных авторов считает полет на Луну с помощью ракетного двигателя вполне осуществимым.
Практическому использованию ракетных двигателей мешает их ужасающая неэкономичность — непомерный расход горючего. Но ракетные установки все-таки находят себе применение в виде приспособлений для облегчения взлета перегруженных самолетов или для быстрого набора высоты. Такие ракетные установки состоят из нескольких ракет, прикрепленных к фюзеляжу. После использования пустые гильзы ракет и вся установка автоматически отрываются от самолета и спускаются на парашюте.
Такие вспомогательные ракетные установки оказываются очень удобными и полезными, когда самолету приходится подниматься с неприспособленных площадок недостаточного размера. Применяя пусковые ракеты, удается вдвое уменьшить разбег истребителя для взлета, что резко увеличивает пропускную способность палубы авианосца.
Практический интерес и широчайшее развитие получили в наше время, как известно, не ракетные, а воздушно-реактивные двигатели.
Вот такому-то воздушно-реактивному двигателю Борис Сергеевич Стечкин и дал теоретическое обоснование, поставив вопрос на научную почву и приблизив реактивный самолет к практическому осуществлению.
В течение последующего десятилетия вопросами реактивного движения у нас занимались мало, и это понятно: воздушно-реактивный двигатель становится выгодным лишь при очень большой скорости полета, приближающейся к звуковой. Но авиации в те времена такие скорости были еще не по силам, и в области реактивного движения продолжал работать только Циолковский.
Одна из работ этого страстного мечтателя все же имела очень интересное практическое приложение. В 1932 году Циолковский опубликовал свое сочинение: «Стратоплан полуреактивный», посвященное приблизительным расчетам некоторых деталей своеобразного самолета, который «движется одновременно силою тяги воздушного винта и отдачей продуктов горения».
В. И. Поликовскому, с его иным строем мысли, прежде всего бросилось в глаза, когда он начал работать в авиации, что при все возрастающих скоростях выхлопные трубы начинают действовать как реактивные двигатели.
Углубившись в физическую сущность явления, он дал его теорию и показал, что, используя выхлопные трубы по предложенному им методу, можно повышать мощность мотора на пятнадцать процентов, что и подтвердилось практикой самолетостроения.
Осуществление воздушно-реактивного двигателя совершенно нового типа возможно, конечно, только на основе глубокого и правильного понимания природы явления.
Но характерно для широты нашей научной и инженерно-технической мысли, что вопросами реактивного движения мы начали заниматься так давно.
Конечно, применяемые теперь в авиации воздушно-реактивные двигатели уже не представляют собой примитивную «свистульку», но принцип их действия тот же.
В чем же заключаются преимущества воздушно-реактивного двигателя перед обычным авиационным мотором?
На первых аэропланах ставились двигатели внутреннего сгорания мощностью 25–40 лошадиных сил. С тех пор поршневые двигатели непрерывно совершенствовались, повышая свою мощность. Есть авиационные моторы в 2000 лошадиных сил и выше.
Рост мощности сопровождается увеличением веса двигателя. Авиационный мотор оброс множеством вспомогательных механизмов и представляет собой сейчас одну из самых сложных машин.
Для увеличения скорости полета необходимо повысить тягу двигателя, не допуская при этом роста его размеров и веса, ибо утяжеление самолета сведет на нет прирост мощности.