Сравнивая с предыдущим выражением, мы видим, что меру информации можно рассматривать как количественную характеристику системы, когда физической величиной является сама система, точнее, матрица плотности, выступающая в данном случае в качестве оператора физической величины, то есть
Из этого следует, что квантовая информация является самой фундаментальной количественной характеристикой системы, поскольку для ее определения нет необходимости вводить дополнительные соображения о том, какие еще физические величины (операторы) характерны для данной системы. Квантовая информация как мера существует всегда, если есть система, независимо от того, в каком состоянии она находится. Информация сама по себе является физической сущностью и существует даже тогда, когда система находится в нелокальном состоянии, поэтому ее можно считать «первичной субстанцией», из которой в процессе декогеренции могут «проявляться» локальные объекты. «Информация » в прямом смысле — она является источником всех других физических процессов и материальных проявлений, которые могут иметь место в системе.
Отсюда и более высокий статус квантовой информации относительно других физических величин, которые мы могли бы дополнительно привлечь для описания системы. А поэтому выше и значимость закона сохранения квантовой информации по сравнению с другими законами сохранения (массы, энергии, импульса и т. д.), о чем уже говорилось в первой главе (заключительная часть раздела 1.2).
Мы рассмотрели, каким образом вводится мера информации, исходя из основополагающих принципов квантовой теории. При таком определении для любого чистого состояния (замкнутой системы) мера информации равна 1 (следствие нормировки амплитуд вектора состояния). Это максимальное значение — то есть для любой изолированной системы информация максимальна и равна единице. Для смешанных состояний (открытых систем) информация меньше единицы, и минимальное ее значение достигается для максимально смешанных состояний и равно 1/
Однако определение (3.7) не совсем удобно в практическом плане. Для нас привычнее иметь дело с аддитивными величинами, когда информация составной системы равняется сумме частичных информаций. А согласно определению (3.7), информация не суммируется, а перемножается. Так, для двусоставной системы (в случае некоррелированного, то есть состояния):
Поэтому оказалось перейти к логарифму от этой величины. Поскольку логарифм произведения равен сумме логарифмов сомножителей, получалась . При этом [ ( 2)] изменяется в пределах от — до 0.
Из статистической механики известно, что на больших временах энтропия системы соответствует среднему значению —
<—
Отсюда связь между количеством информации в системе и энтропией
(
) = <
>, которая называется
Заметим, что ( ) и [ ( 2)] изменяются в одних и тех же пределах и никогда сильно не отличаются друг от друга. Однако при использовании этой меры, чтобы получить положительное число, приходится в выражениях ставить знак минус, как в (3.6). При этом иногда забывается, что при переходе к логарифму с информацией произошел своеобразный «перевертыш»: там, где был минимум информации, — теперь стал максимум, а максимум информации (единица для чистого состояния) обратился в нуль. Хотя и эту ситуацию можно трактовать так, что, с точки зрения внешнего наблюдателя, о чистом состоянии он ничего не может сказать, поскольку это замкнутая система, которую наблюдатель еще не «потревожил» своим измерением.